Laboratory Manual of Microbiology, Biochemistry and Molecular Biology
About the Author

Dr Jyoti Saxena has secured M.Sc and Ph.D. degrees from Kumaon University, Nainital and has been teaching U.G. and P.G classes since 1994 in the various fields of Bioscience and Biotechnology in Banasthali University. She has 22 years of research experience in microbiology and has visited USA as post doc fellow in 1991-92. She has 40 research papers published in National and International journals and 1 edited book to her credit. She is presently working as Professor and Head, Biochemical Engineering Department in B.T. Kumaon Institute of Technology, Dwarahat (Uttarakhand).

Dr. Mamta Baunthiyal did her Master’s degree in Biochemistry from the University of Kurukshetra. She joined as a teaching faculty in the department of Bioscience and Biotechnology, Banasthali University, Banasthali (Raj.). She took her Ph.D degree in biotechnology from Banasthali University and has 16 years of teaching experience of UG and PG classes. Her research area is environmental biotechnology. Since last decade she is actively working on phyto remediation of fluoride and presented papers at National and International conferences. Currently she is working as Head, Biotechnology Department in G.B. Pant Engineering College, Pauri, Garhwal (Uttarakhand).

Dr. Indu Ravi worked as Associate professor in the Dept. of Bioscience and Biotechnology, Banasthali University, Banasthali (Raj.). She has 14 years of teaching experience in the field of biotechnology of UG and PG classes. She acquired her post graduation in Biotechnology from Indian Veterinary Research Institute (IVRI), Izatnagar, and Ph.D. in biotechnology. Her area of specialization is Plant Molecular Biology. She has published papers, book chapters and presented many papers related to her field of specialization at National and International conferences. She is presently working as Assistant Regional Director at Indira Gandhi National Open University (IGNOU), Regional Centre, Jaipur.
Laboratory Manual of Microbiology, Biochemistry and Molecular Biology

Jyoti Saxena
Mamta Baunthiyal
Indu Ravi
To
Our Reverend
DADA

A Scholar, Philosopher and Guide
FOREWORD

Science at times is defined as study of ideas verifiable through experiment. It is well known the world over that quality of science learning and teaching is directly proportional to experiences in the laboratory. In fact, this is one of the weaknesses in the science education in our country. The way we conduct our laboratories actually makes a mockery of the subject. As a result, the theory and the practices become virtually disjoint elements of the same subject with either aspects having no bearing on the other.

I myself do not have any readymade recipe through which both theory and practicals could be integrated so that science learning becomes a holistic experience. My wonderful and learned friends are bringing out a laboratory manual of Microbiology, Biochemistry and Molecular Biology. By a cursory look through the table of contents, I am getting a feeling that this book may provide a partial solution to the problems which I have indicated above.

I am told that this book is designed to meet the requirements of undergraduate and post graduate students appearing for examination in Bioscience, Biotechnology, Microbiology, Biochemistry and Biochemical Engineering. I am further informed that it is a much needed effort since most of the practical books available in the market focus only on one or two specializations; in contrast this laboratory manual provides a snapshot to most of the common experiments prescribed by any University.

I must say that authors have well utilized their experience and expertise to bring this book to the current form. There is no doubt in my mind that this book will be received well by the students and research labs.
Last, but not the least, I am glad that the three jewels identified and polished by Dada are adding yet another feather in the cap of Banasthali.

Congratulations and all the best!

May 9, 2011

Aditya Shastri
Vice Chancellor
Banasthali University
Banasthali
PREFACE

The applications of Microbiology, Biochemistry and Molecular Biology have led to the accumulation of a huge body of knowledge and phenomenal growth in procedures and methodologies. In recent years many novel methods have been developed and the old methods have been improved. Nevertheless the time tested classical techniques have been retained. The comprehensive practical training for any student studying biological sciences is must. Though many practical books are available in the market but this is an unique combination of protocols that covers maximum (about 80%) of the practicals of various Indian universities for UG and PG courses in Bioscience, Biotechnology, Microbiology, Biochemistry and Biochemical Engineering.

While preparing this laboratory manual the efforts have been made into various aspects of laboratory practices for the beginners like; the do's and don'ts of working in any laboratory, concepts and terminologies used, and how to prepare the solutions/reagents. The protocols given here have been tested by authors during their long teaching experience. The book has been divided into four sections, the first one is Introduction which is subdivided into laboratory etiquette and safety, molecular, empirical and formula weight, planning a solution of a particular molarity, accuracy and calibration, buffers etc. Second part is about Instruments: Principle and Precautions which elaborates various commonly used equipments needed to perform different experiments. The third part of the book is about Experiments which has all the traditional to latest experiments with principle, requirements, procedure, results and observation and precautions in three major areas of Bioscience and Biotechnology i.e. Microbiology, Biochemistry and Molecular Biology. At the end a rather comprehensive Appendix is given as section four.

The microbiology section contains all the basic techniques used in laboratories and industries. It also consists of some advanced microbiological experiments related to industrial microbiology. The second section deals with the basic practicals associated with carbohydrates, lipids, amino acid analysis, and chromatographic techniques. Besides, other advanced techniques such as isoelectric focusing, SDS-PAGE etc. have also been included. As molecular biology has become an integral part of almost all biological courses, the third section of this book is dedicated to all the techniques related to and used in molecular biology. Some experiments related to mitochondrial and chloroplast DNA
isolation, recombinant DNA transformation and selection, blotting and hybridization techniques which are generally not found in most practical books, have also been included here. All the three sections of the book i.e. microbiology, biochemistry and molecular biology have been written by authors who have long experience and are well versed with conducting practicals related to their expertise.

One person who has been instrumental for the initiation of this project and who has rendered his whole hearted support at all times for the successful completion of this book is none other than Dr. Ravi Israni. We owe him our heartfelt gratitude. The authors also wish to acknowledge the support and guidance provided by Prof. Aditya Shastri, Vice Chancellor and Prof. Vinay Sharma, Head, Dept. of Bioscience and Biotechnology of Banasthali University. For the preparation of this book we have consulted many practical books and we would like to extend our thanks to all the authors of these books namely K.R. Aneja, R.C. Dubey, D.K. Maheshwary, R.N. Bhattacharya, S. Sadasivam, A. Manickam etc.

Last but not least, we are greatly indebted to the almighty and our family members for their blessings and making our path smooth.

Jyoti Saxena
Mamta Baunthiyal
Indu Ravi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absorbance</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulphate</td>
</tr>
<tr>
<td>BPB</td>
<td>Bromophenol blue</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>BTH</td>
<td>Benzo (1,2,3) thiadiazole-7-carbothionic acid S-methyl ester</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethyl ammonium bromide</td>
</tr>
<tr>
<td>CAT</td>
<td>Chloramphenicol acetyl transferase</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons</td>
</tr>
<tr>
<td>DAB</td>
<td>3, 3'-Diamino benzidine</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethyl pyrocarbonate</td>
</tr>
<tr>
<td>DMAB</td>
<td>β- Dimethyl amino benzaldehyde</td>
</tr>
<tr>
<td>DMF</td>
<td>N, N-dimethyl formamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>DW</td>
<td>Distilled water</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra acetic acid</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethedium bromide</td>
</tr>
<tr>
<td>EMB</td>
<td>Eosine-methylene blue</td>
</tr>
<tr>
<td>FW</td>
<td>Formula weight</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GAA</td>
<td>Glacial acetic acid</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GUS</td>
<td>β-Glucuronidase</td>
</tr>
<tr>
<td>HEPA</td>
<td>High Efficiency Particulate Air</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>IR</td>
<td>Infra red</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-thiogalactoside</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodaltons</td>
</tr>
<tr>
<td>kbp</td>
<td>Kilobase pairs</td>
</tr>
<tr>
<td>Km</td>
<td>Michaelis-Menton constant</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
</tbody>
</table>
LB media - Luria Bertani media
LMW - Low molecular weight marker
M - Molar
MW - Molecular weight
Mr - Relative molecular weight
mg - milligram
min - minutes
ml - milliliter
μg - microgram
μl - microlitre
μkat - microkatal
μm - micromoles
nm - nano meters
N - Normal
OD - Optical Density
pfu - Plaque forming units
psi - Pounds per square inch
ppm - parts per million
Pi - inorganic phosphate
PBS - Phosphate buffered saline
PCR - Polymerase chain reaction
PDA - Potato Dextrose Agar
PVDF - Polyvinylidene difluoride
Rf - Relative front
RCF - Relative centrifugal force
RPM - Revolutions per minute
S - Svedberg unit
Sec - seconds
SDS-PAGE - Sodium dodecyl sulphate polyacrylamide gel electrophoresis
TE - Tris EDTA
TBS - Tris buffered saline
Tm - melting temperature
TEMED - N, N', N'-Tetra methyl ethylene diamine (hydroxy methyl) amino methane
TLC - Thin layer chromatography
Tris - Tris (hydroxymethyl) aminomethane
UV - Ultra violet
v - velocity
Vmax - maximum velocity
v/v - volume by volume
w/v - weight by volume
X-gal - 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
CONTENTS

Foreword
Preface
Abbreviations

I. Introduction 1
i. Laboratory Etiquette and Safety 1
ii. Good Laboratory Practices 2
iii. Maintenance of Distillation Apparatus 4
iv. Washing of Glassware 5
v. Dry Sterilization 6
vi. Handling of Pipette 7
vii. Molecular, Empirical and Formula Weight 10
viii. Planning a Solution of a Particular Molarity 11
ix. Making Solutions from Hydrated Compounds 11
x. Measurement of Liquids with Normality / Molarity 12
xi. Numbers found on Chemical Bottles 13
xii. Accuracy and Calibration 14
xiii. Buffers 15

II. Instruments: Principle and Precautions 21
i. Weighing Balance 21
ii. Spectrophotometer 24
iii. Laminar Flow 26
iv. Autoclave 28
v. Centrifuge 29
vi. pH meter 35
vii. Incubator 38
viii. Hot air oven 39
ix. Compound microscope 40
III. EXPERIMENTS

PART 1 MICROBIOLOGY

1.1 Micrometry and Measurement of Microorganisms

1.1.1. Calibration of microscope by using ocular and stage micrometer 43

1.1.2. Measurement of size of microorganism / spore 45

1.2 Preparation of Culture Media

1.2.1. Liquid culture medium (broth) 47

1.2.2. Solid medium 48

1.2.3. Agar plates and agar slants 49

1.2.4. Selective and differential media 51

1.2.4.1. Eosin Methylene Blue (EMB) Method 51

1.2.4.2. Mannitol Salt Agar 51

1.2.4.3. Pikovskaya Agar 52

1.3 Aseptic Methods

1.3.1. Physical methods of sterilization 53

1.3.2. Chemical methods of sterilization 54

1.3.3. Gaseous sterilization 54

1.4 Cultivation Techniques

1.4.1. Streak plate method 55

1.4.2. Pour plate technique 57

1.4.3. Spread plate technique 59

1.4.4. Serial dilution technique 59

1.5 Preservation and Maintenance of Cultures

1.5.1. Maintenance by sub-culturing 62

1.5.2. To prepare agar slants with mineral oil 63

1.5.3. Storage in soil 64

1.5.4. To store the cultures in liquid nitrogen 64

1.5.5. To store the cultures at -70°C 65

1.5.6. To preserve the cultures by lyophilization (Freeze drying) 65

1.6 Staining Techniques

1.6.1. Preparation of bacterial smear and fixation 68

1.6.2. Simple staining of bacteria 69
1.6.3. Negative staining of bacteria
1.6.4. Gram’s staining of bacteria
1.6.5. Acid Fast staining
1.6.6. Endospore staining
 1.6.6.1. By malachite green
 1.6.6.2. Dorner’s method
1.6.7. Capsule staining to detect the capsule or slime layer in bacteria
1.6.8. Flagella staining
 1.6.8.1. Lee’s method
 1.6.8.2. Leifson’s method
1.6.9. To test viability of bacteria by staining.
1.6.10. Staining of fungi
1.6.11. Staining of Arbuscular Mycorrhiza (AM)

1.7 Isolation and Enumeration of Microbes
1.7.1. Isolation and enumeration of fungi from soil
 1.7.1.1. Isolation of fungi by dilution plate method
 1.7.1.2. Isolation of fungi by Warcup method
1.7.2. Isolation of seed microflora
 1.7.2.1. Agar plate method
 1.7.2.2. Blotter method
1.7.3. Isolation of aeromycoflora
1.7.4. Isolation of vesicular arbuscular mycorrhazia (VAM) spores from the soil
 1.7.4.1. Wet- Sieving method
 1.7.4.2. Floatation method
1.7.5. Isolation and enumeration of microorganisms from rhizosphere
1.7.6. Isolation of microorganisms from rhizoplane
1.7.7. Isolation of protozoa from soil
1.7.8. Isolation of cyanobacteria
1.7.9. Isolation of aquatic fungi by baiting method
1.7.10. Isolation of yeast
1.7.11. Isolation of rhizobia from the root nodules
1.7.12. Isolation and cultivation of anaerobic bacteria
 1.7.12.1. Candle Jar method
1.7.12.2. Gaspak Anaerobic Jar method 91
1.7.13. Analysis and enumeration of bacteria in milk 92
1.7.14. Presumptive test for coliforms to check the quality of milk 93
1.7.15. Microbiological examination of cheese 94
1.7.16. Microbiological examination of butter 94

1.8 Counting of Cells/ Spores 95
1.8.1. Measurement of cells/ spores by counting chamber 95
1.8.2. Counting of cells by serial dilution technique 97
1.8.3. Counting of bacterial population spectrophotometrically 98

1.9 Microbial Growth 99
1.9.1. Determination of bacterial growth by spectrophotometric method 99
1.9.2. Measurement of fungal growth by colony diameter 100
1.9.3. Measurement of fungal growth by dry weight of mycelium 101
1.9.4. Estimation of biomass 102
1.9.4.1. Dry cell weight estimation 102
1.9.4.2. Packed cell volume determination 103
1.9.5. Effect of temperature on growth 104
1.9.6. Effect of pH on growth 106
1.9.7. Determination of antibiotic sensitivity by disc method 107

1.10 Fermentation Technology 107
1.10.1. Estimation of lactic acid 108
1.10.2. Estimation of citric acid production by Aspergillus niger 109
1.10.3. Bioconversion of tannic acid to gallic acid 111
1.10.4. Determination of alcohol production in the fermented broth 113
1.10.5. Alpha amylase biosynthesis and measurement of its activity 116

1.11 Mushroom Cultivation 118
1.11.1. Production of spawn for white button mushroom (Agaricus bisporus) 118
1.11.2. Cultivation of white button mushroom 120
PART 2 BIOCHEMISTRY

2.1. Carbohydrates 124

2.1.1. Qualitative test for Carbohydrates 125
 2.1.1.1. Molisch’s Test 125
 2.1.1.2. Iodine Test 126
 2.1.1.3. Barfoed’s Test 126
 2.1.1.4. Seliwanoff’s Test 127
 2.1.1.5. Fehling’s Test 127
 2.1.1.6. Benedict’s Test 128
 2.1.1.7. Bial’s Test 129
 2.1.1.8. Osazone Test 129
 2.1.1.9. Test for non reducing sugars 130

2.1.2. Quantitative test for carbohydrates 130
 2.1.2.1. Determination of total carbohydrate by Anthrone reagent 130
 2.1.2.2. Determination of reducing sugar by Nelson-Somogyi method 132
 2.1.2.3. Determination of cellulose 134

2.2. Amino Acids and Proteins 135

2.2.1. Color reaction of proteins and amino acids 138
2.2.2. Titration curve of amino acids 143
2.2.3. Protein assay methods 145
 2.2.3.1. The λ max for proteins and amino acids 146
 2.2.3.2. Determination of molar absorbance coefficient (ε) of L-Tyrosine 147
 2.2.3.3. Lowry’s method of protein assay 148
 2.2.3.4. Bradford protein assay 151
 2.2.3.5. Bicinchoninic acid protein assay 153
 2.2.3.6. Biuret assay 154

2.2.4. Isolation of casein from milk 155
2.2.5. Ammonium sulphate fractionation of proteins 156

2.3. Enzymes 159

2.3.1. Extraction and purification of enzymes: General strategies 159
2.3.2. Expression of enzyme activity 164
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2.1</td>
<td>To study the effect of pH and temperature on activity of acid phosphatase</td>
<td>166</td>
</tr>
<tr>
<td>2.3.2.1.1</td>
<td>To determine the activity of acid phosphatase</td>
<td>166</td>
</tr>
<tr>
<td>2.3.2.1.2</td>
<td>To study the effect of pH on activity of acid phosphatase</td>
<td>169</td>
</tr>
<tr>
<td>2.3.2.1.3</td>
<td>To study the effect of temperature on activity of acid phosphatase</td>
<td>170</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Purification of acid phosphatase from raw wheat germ</td>
<td>172</td>
</tr>
<tr>
<td>2.3.2.3</td>
<td>To determine the Km and Vmax value of acid phosphatase</td>
<td>175</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Extraction and assay of enzymes</td>
<td>178</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Malate dehydrogenase</td>
<td>178</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Peroxidase</td>
<td>180</td>
</tr>
<tr>
<td>2.3.3.3</td>
<td>Polyphenol oxidase</td>
<td>182</td>
</tr>
<tr>
<td>2.3.3.4</td>
<td>Salivary Amylase</td>
<td>184</td>
</tr>
<tr>
<td>2.3.3.5</td>
<td>Papain</td>
<td>185</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Immobilization of an enzyme</td>
<td>187</td>
</tr>
<tr>
<td>2.4</td>
<td>Lipids</td>
<td>189</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Qualitative test for lipids</td>
<td>191</td>
</tr>
<tr>
<td>2.4.1.1</td>
<td>Solubility test for lipids</td>
<td>191</td>
</tr>
<tr>
<td>2.4.1.2</td>
<td>Grease spot test</td>
<td>191</td>
</tr>
<tr>
<td>2.4.1.3</td>
<td>Acrolein test for glycerol</td>
<td>192</td>
</tr>
<tr>
<td>2.4.1.4</td>
<td>Liebermann-Burchard test for cholesterol</td>
<td>192</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Determination of free fatty acids</td>
<td>193</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Determination of Iodine number</td>
<td>194</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Determination of Saponification value</td>
<td>196</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Estimation of serum cholesterol (total)</td>
<td>198</td>
</tr>
<tr>
<td>2.5</td>
<td>Nucleic acids</td>
<td>200</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Determination of λ max of nucleic acids</td>
<td>200</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Determination of DNA by Diphenylamine method</td>
<td>201</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Determination of RNA by Orcinol method</td>
<td>202</td>
</tr>
<tr>
<td>2.6</td>
<td>Cell organelles</td>
<td>203</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Isolation of mitochondria</td>
<td>203</td>
</tr>
<tr>
<td>2.6.1.1</td>
<td>Isolation of mitochondria from plant leaves</td>
<td>203</td>
</tr>
<tr>
<td>2.6.1.2</td>
<td>Isolation mitochondria from rat liver</td>
<td>204</td>
</tr>
</tbody>
</table>
Contents

2.6.2. Isolation of chloroplast from plant leaves

2.7. Plant Pigments and Phenolics

2.7.1. Estimation of Chlorophyll
2.7.2. Estimation of carotene
2.7.3. Estimation of lycopene
2.7.4. Estimation of Total phenol by Folin-Ciocalteau method

2.8. Vitamins

2.8.1. Estimation of Thiamine
2.8.2. Estimation of Ascorbic acid in lemon juice
2.8.3. Estimation of Riboflavin
2.8.4. Estimation of Vitamin A

2.9. Biochemical Separation Techniques

2.9.1. Paper chromatography
2.9.2. Thin layer chromatography
2.9.3. Gel-filtration chromatography
2.9.4. Polyacrylamide sodium dodesyl sulphate gel electrophoresis (SDS-PAGE)
2.9.5. Silver staining
2.9.6. Isoelectrofocusing.

PART 3 MOLECULAR BIOLOGY

3.1. Isolation of Nucleic acids

3.1.1. Isolation of DNA

3.1.1.1. Isolation of E. coli plasmid DNA
3.1.1.2. Isolation of E. coli genomic DNA
3.1.1.3. Isolation of phage DNA
3.1.1.4. Isolation of plant DNA (CTAB method)
3.1.1.5. Isolation of mammalian DNA

3.1.1.5.1. Isolation of DNA from mammalian tissue
3.1.1.5.2. Isolation of DNA from blood cells
3.1.1.6. Isolation of chloroplast DNA
3.1.1.7. Isolation of mitochondrial DNA
3.1.1.8. Agarose gel electrophoresis

3.1.2. Isolation of RNA

3.1.2.1. Isolation of total RNA
3.1.2.2. Isolation of messenger RNA 272
3.1.2.3. Agarose gel electrophoresis of RNA 274
3.1.2.4. Quantification of DNA/RNA 275
3.1.2.5. Determination of DNA quality 275

3.2. Denaturation and Renaturation of DNA 276
3.2.1. Determination of melting temperature (Tm value) of DNA 276
3.2.2. Determination of GC/AT content of DNA 277

3.3. Restriction Digestion 278
3.3.1. Restriction digestion of DNA 278
3.3.2. Agarose gel electrophoresis of digested DNA samples 280

3.4. Polymerase chain Reaction (PCR) 281
3.4.1. DNA amplification by PCR 281
3.4.2. RAPD analysis of Plant DNA 286
3.4.3. PCR amplification of 16s ribosomal RNA 289

3.5. Blotting Techniques and Hybridization 290
3.5.1. Southern blotting and hybridization 294
3.5.2. Northern blotting and hybridization 301
3.5.3. Western blotting and hybridization 301

3.6. Ligation and Transformation of DNA 303
3.6.1. Ligation 304
3.6.2. Preparation of competent E. coli cells 305
3.6.3. Transformation of E. coli cells 306
3.6.4. Transformation of plant cells using Agrobacterium tumifaciens 306
3.6.5. Isolation of plant protoplasts 310

3.7. Selection of Recombinant Cells 312
3.7.1. Selection by antibiotic resistance 312
3.7.2. Lac Z’ gene selection 313
3.7.3. Gus assay 315

REFERENCES 318
APPENDIX 320
Appendix IVA: Microbiology 320
Appendix IV B: Biochemistry 346
Appendix IV C: Molecular Biology 358