Resource Conservation Technology in Pulses

P.K. Ghosh
Narendra Kumar
M.S. Venkatesh
K.K. Hazra
N. Nadarajan

SCIENTIFIC PUBLISHERS (INDIA)
Resource Conservation Technology in Pulses

Editors
P.K. Ghosh
Narendra Kumar
M.S. Venkatesh
K.K. Hazra
N. Nadarajan
FOREWORD

Concerted research and development efforts have transformed Indian agriculture from subsistence to intensive farming, making India self-sufficient in foodgrains production. During this process, paradigm shift in cropping systems with focused attention to cereal crops has pushed pulses into marginal and poor lands. While the mission of increasing foodgrains production stands somehow achieved without major jump in pulses productivity and production in our country, these were accompanied by widespread problems of resource degradation. Though production of pulses has reached recently to 18.01 mt after a stagnant period of more than 10 years, there is a greater need to increase productivity using suitable management practices to improve livelihood and nutritional security of large number of Indian vegetarians. About 85% pulses are grown under rainfed conditions with less or no fertilizers. Traditional practice of tillage and clean cultivation leads to drastic decline in SOC and overall soil health. Under such situation, resource conservation practices become necessity to achieve sustainable and profitable pulse production subsequently aiming to improve the livelihood of farmers. It has assumed importance in view of the widespread natural resource degradation leading to increased production cost, unsustainable resource use, environmental pollution and health of ecosystems. Worldwide more than 100 million hectare area is under conservation agriculture, however, it is new to our country. In world conservation agriculture is more successful in rainfed areas, whereas in India it is mostly confined to irrigated agriculture. There is more efforts need to be done for popularization of these practices among Indian farmers.

This book on 'Resource Conservation Technology in Pulses' covers wide range of issues related to resource conservation in pulse based cropping systems. This book is an outcome of sincere efforts by authors who deserve great appreciation. I trust and believe that this book will serve as an important reference book for those engaged in research and extension for improving and stabilizing pulse production in the country and will simulate further research in critical aspects of conservation agriculture.

(S. Ayyappan)
Indian agriculture has been successful in achieving increased foodgrains production. While the mission of increasing foodgrains production stands somehow achieved without major jump in pulses productivity and production in country, these were accompanied by widespread problems of resource degradation. Though recently production of pulses has reached to 17.09 mt (2012-13) after a stagnant period of more than 10 years, there is greater need to increase productivity using suitable management practices to improve livelihood and nutritional security of large number of Indian vegetarians. Pulses are grown on marginal and degraded land over the years under low or no inputs. Traditional or conventional agriculture bases most of its operations or practices on soil tillage; i.e., inversion tillage such as mouldboard ploughing or disk harrow, or vertical tillage such as chisel, "spiked" harrow and other tools. Soil tillage drastically alters its original structure, breaking up its natural aggregates and burying the residues of the previous crop, so that, the bare soil becomes unprotected and exposed to the action of the wind and rain. Under these circumstances water and soil erosion and sediment runoff are likely to occur. Furthermore, with tillage, soil organic matter and biodiversity content are reduced and unnecessary emissions of CO$_2$ into the atmosphere take place. Therefore, the conservation of natural resources becomes necessity to achieve sustainable and profitable pulse production system and subsequently aims to improve livelihoods of the farmers. Conservation practices have shown advantages over traditional practices by means of improving productivity and soil health in case of cereal crops in many parts of world.

Over the past 2–3 decades globally, resource conservation technology has emerged as a way for transition to the sustainability of intensive production systems. It has assumed importance in view of the widespread natural resource degradation leading to increased production costs, unsustainable resource use, environmental pollution and health of ecosystems. It permits management of water and soils for agricultural production without excessively disturbing the soil, while protecting it from the processes that contribute to degradation like erosion, compaction, aggregate breakdown, etc. Therefore, the conservation of natural resources becomes necessity to achieve sustainable and profitable pulse production system and subsequently aims to improve livelihoods of the farmers. The RCT has shown to improve, conserve and use natural resources in a more efficient way through integrated management of available soil, water and biological resources. It is now widely recognised as a viable concept for sustainable agriculture due to its comprehensive benefits in economic, environmental and social terms. Its ability to increase grain yields to provide better economic performance and reduce production risks and to improve energy use efficiency has been well documented. What is required is better understanding of its performance and requirements across wider geographic regions and environmental conditions to enable the diffusion of technology.
The present book is outcome of valuable contributions made by various scientists and researchers across the country. This book has comprehensive coverage of resource conservation practices in pulses and pulse based cropping systems and is expected to provide a valuable source book for scholars and researchers, as well as guide book to farming community and development agencies. Contents in the book are organised in nine parts, which include i) Pulses scenario and status of resource conservation technologies in India, ii) Pulses in conservation agriculture and crop diversification, iii) Genetic approaches for harnessing conservation agriculture, iv) Integrated input management, v) Climate change and carbon sequestration opportunities, vi) Residue management and farm mechanisation, vii) Resource conservation technologies for abiotic stress management, viii) Resource conservation technologies for biotic stress management and ix) Indigenous technical knowledge, socio-economic consideration and impact assessment. This book is expected to provide sound basis for sustainable pulse production and refine the research and policies related to pulses in the country.

We are extremely indebted to Dr. S. Ayyappan, Secretary, DARE and Director General Indian Council of Agricultural Research for providing necessary guidance. The authors are sincerely thankful to all the contributors for their valuable chapters to this book, thereby sharing their experiences with the readers.

Editors
CONTRIBUTORS

A.K. Srivastava
Emeritus Scientist and Ex-Director
Vivekananda Parvatiya Krishi Anusandhan Sansthan
Almora – 263 601 (Uttarakhand)

A.K. Tripathi
Assit. Professor
CSAUA&T, Kanpur – 208 002
Uttar Pradesh

A.N. Ganeshamurthy
Head, Division of Soil Science and Agricultural Chemistry
Indian Institute of Horticultural Research
Bengaluru – 560 089
Karnataka

Aditya Pratap
Senior Scientist (Plant Breeding)
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

Ambreesh Singh Yadav
Research Associate
ZPD Zone IV, Kanpur

Andrew Green
Director
Zinc Nutrient Initiative and Environment, Health & Sustainability
International Zinc Association
1822 E NC Highway 54
Suite 120, Durham
NC 27713 USA

Anup Das
Senior Scientist (Agronomy)
ICAR Research Complex for NEH Region
Umiam - 793 103
Meghalaya

Anupam Mishra
In-charge, ZPD, Zone VII
JNKVV Campus, Adhartal,
Jabalpur – 482 004
(Madhya Pradesh)

Arti Yadav
Senior Research Fellow
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

Asha Sahu
Indian Institute of Soil Science
Nabibagh, Berasia Road
Bhopal 462 038 (Madhya Pradesh)

Ashutosh Barthwal
Department of Agronomy
G.B. Pant University of Agriculture & Technology, Pantnagar – 263145
Udham Singh Nagar (Uttarakhand)

Asit B. Mandal
Principal Scientist
Crop Improvement Division
Central Research Institute for Jute and Allied Fibres
Kolkata

Asit Mandal
Indian Institute of Soil Science,
Nabibagh, Berasia Road,
Bhopal - 463 038 (Madhya Pradesh)

B. Venkateswarlu
Director, Central Research Institute for Dryland Agriculture,
Santoshnagar, Hyderabad - 500 059
Andhra Pradesh

Bansa Singh
Principal Scientist (Nematology)
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)
Contributors

K.K. Hazra
Scientist (Agronomy)
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

K.M. Hati
Indian Institute of Soil Science
Nabibagh, Berasia Road
Bhopal 462 038 (Madhya Pradesh)

M. Mohanty
Indian Institute of Soil Science
Nabibagh, Berasia Road
Bhopal 462 038 (Madhya Pradesh)

M. Senthilkumar
Senior scientist (Microbiology)
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

M.C. Manna
Indian Institute of Soil Science
Nabibagh, Berasia Road
Bhopal 462 038 (Madhya Pradesh)

M.K. Singh
Scientist (Farm Machineries)
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

M.S. Venkatesh
Principal Scientist (Soil Chemistry)
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

Masood Ali
Former Director
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

Mohan Singh
Principal Scientist (Microbiology)
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

Muraleedhar S. Aski
Scientist (Plant Breeding)
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

N. Nadarajan
Director
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

N.S. Pasricha
Ex-Director
Potash Research Institute of India
Gurgaon

Naimuddin
Senior Scientist
Indian Institute of Pulse Research
Kanpur - 280 024 (Uttar Pradesh)

Narendra Kumar
Senior Scientist (Agronomy)
Indian institute of Pulses Research
Kanpur – 208 024
Uttar Pradesh

Neelu Mishra
Indian institute of Pulses Research
Kanpur – 208 024 (Uttar Pradesh)

P. Duraimurugan
Senior Scientist (Agri. Entomology)
Directorate of Oilseeds Research
Hyderabad - 500 030
(Andhra Pradesh)

P.K. Bandyopadhay
Department of Agricultural
Chemistry and Soil Science
Bidhan Chandra Krishi
Viswavidyalaya
Mohanpur -741 252 (West Bengal)

P.K. Ghosh
Director
Indian Grassland and Fodder
Research Institute
Jhansi - 284 003 (Uttar Pradesh)

P.S. Basu
Principal Scientist (Plant Physiology)
Indian institute of Pulses Research
Kanpur – 208 024
Uttar Pradesh

Pramod Kumar Panda
Senior Scientist (Agronomy)
Directorate of Water Management
Bhubaneswar-751023 (Orissa)

Prasoon Verma
Indian Institute of Pulses Research
Kanpur - 208 024 (Uttar Pradesh)
CONTENTS

Foreword iii
Preface v

PART - I
PULSES SCENARIO AND STATUS OF RESOURCE CONSERVATION TECHNOLOGIES IN INDIA

1. An overview of pulses production in India
 — N. Nadarajan and Aditya Pratap 1

2 Constraints, issues and opportunities of RCT in pulse based cropping systems
 — P.K. Ghosh and K.K. Hazra 18

3 Success story of resource conservation technology in Indo-Gangetic plains
 — N.S. Pasricha 32

4 Resource conservation technologies in pulse based cropping systems in NEH region
 — Anup Das, G.I. Ramkrushna, S.V. Ngachan and G.C. Munda 43

5 Resource conservation technologies: A novel paradigm to magnify resource use efficiency in rainfed and drylands of India
 — A.K. Tripathi 58

PART - II
PULSES IN CONSERVATION AGRICULTURE AND CROP DIVERSIFICATION

6 Role of pulses in conservation agriculture
 — Masood Ali and M.S. Venkatesh 75

7 Resource conservation technologies in rice fallow
 — Masood Ali, P.K. Ghosh and K.K. Hazra 83

8 Advances in resource conservation technology in pulse production system
 — Narendra Kumar, M.K. Singh and Saumya Singh 90

9 Pulses under organic farming: Opportunities and constraints
 — Mohan Singh 103

PART - III
GENETIC APPROACHES FOR HARNESSING CONSERVATION AGRICULTURE

10 Plant type and varietal features of pulses for resource conservation technologies in agriculture
 — S.K. Chaturvedi, Muraleedhar Aski and U.C. Jha 115
11 Plant type and varietal features of mungbean and urdbean in rice based cropping systems
— G.P. Dixit 120

12 Importance of plant genetic resources in conservation agriculture
— Asit B. Mandal and D. Datta 131

13 Protection of intellectual property rights with reference to resource conservation technologies
— D. Datta and Asit B. Mandal 138

14 Nutritional quality traits and their improvement in pulses
— Jagdish Singh 145

15 Quality seed maintenance of pulses in view of resource conservation agriculture
— S.K. Chaturvedi, Murleedhar Aski and Neelu Mishra 156

PART - IV
INTEGRATED INPUT MANAGEMENT

16 Integrated nutrient management in pulse based cropping systems in different agro-ecological regions of India
— A.N. Ganeshamurthy 169

17 Nutrient acquisition and recycling through pulses
— M.S. Venkatesh, K.K. Hazra and Rohit Katiyar 190

18 Water management strategies under Resource Conservation Technologies
— Chandra Sekhar Praharaj 199

19 Zinc in crops and human health – An overview
— Soumitra Das and Andrew Green 213

20 Resource conservation and productivity enhancement of legume dominant farming systems
— A.K. Srivastva 224

21 Natural resource conservation through watershed management in rainfed areas: Role of pulses
— Pramod Kumar Panda 246

22 Potential and prospect of bio-fertilizers in pulse production under resource conservation technologies
— K. Swarnalakshmi, M. Senthilkumar and Mohan Singh 257

23 Exploring pulse microbes and rhizosphere engineering
— Asit Mandal, Asha Sahu, M.C. Manna and P.K. Ghosh 272

PART - V
CLIMATE CHANGE AND CARBON SEQUESTRATION OPPORTUNITIES

24 Carbon sequestration potential in conservation agriculture
— M.C. Manna, Asha Sahu, Asit Mandal and P.K. Ghosh 295
Contents

25 Role of resource conservation technologies in mitigating climate change
— P.K. Ghosh, Narendra Kumar and Arti Yadav
312

26 Role of soil nitrogen supply in crop production under climate change perspective
— N.S. Pasricha
326

27 Carbon sequestration to mitigate climate change
— K.K. Bandyopadhyay
342

28 Potential for carbon sequestration through reclamation of degraded lands
— Debshish Mandal
358

29 Carbon sequestration under soybean-wheat cropping system in the Indian Himalayas
— Ranjan Bhattacharya
373

30 Carbon sequestration in pulse based cropping systems: Past experience and future prediction
— K.K. Hazra, M.S. Venkatesh, P.K. Ghosh, Narendra Kumar and Ummed Singh
390

PART - VI

RESIDUE MANAGEMENT AND FARM MECHANISATION

31 Conservation agriculture and pulses: Impact on soil health
405

32 Residue management in pulse based cropping system under resource conservation technologies
— Narendra Kumar, M.K. Singh and Saumya Singh
419

33 Energy budgeting in mechanised pulse production
— M. K. Singh, Narendra Kumar and P.K. Ghosh
429

34 Role of farm mechanisation in conservation agriculture
— M.K. Singh and Narendra Kumar
436

PART - VII

RESOURCE CONSERVATION TECHNOLOGIES FOR ABIOTIC STRESS MANAGEMENT

35 Resource conservation technologies in rainfed agriculture and mitigation of abiotic stress in pulse crops
— Ch. Srinivasa Rao and B. Venkateswarlu
443

36 Improving water use efficiency and drought under RCT
— P.S. Basu
462

37 Resource conservation technologies for soil moisture conservation in drylands
— R. Saha, J. Somasundaram and P.K. Ghosh
478

38 Moisture stress and its management in pulses through resource conservation technologies in rainfed areas
483
39 Mitigating abiotic stresses in *rabi* pulses
 — *V.K. Singh and Ashutosh Barthwal*
 494
40 Root distribution pattern of pulses in response to water availability
 — *P.K. Bandyopadhyay*
 512

PART - VIII
RESOURCE CONSERVATION TECHNOLOGIES FOR BIOTIC STRESS MANAGEMENT

41 Climate change and insect pest dynamics in pulses
 — *P. Duraimurugan*
 523
42 Resource conservation technologies and integrated disease management strategies in pulses
 — *R.G. Chaudhary and Naimuddin*
 535
43 Post harvest losses in pulses and its management
 — *Praoon Verma*
 556
44 Issues related to weed management in RCT
 — *Narendra Kumar, K.K. Hazra and S.K. Yadav*
 567
45 Soil sickness due to nematodes and its management through RCTs
 — *Bansa Singh and R. Jagdeeswaran*
 576

PART - IX
INDIGENOUS TECHNICAL KNOWLEDGE, SOCIO-ECONOMIC CONSIDERATION AND IMPACT ASSESSMENT

46 Farmer participatory seed production through model village concept for enhancing pulse production
 — *S.K. Singh and Ambreesh Singh Yadav*
 593
47 Enhancing farm income through RCT mediated village cluster approach
 — *Chandra Sekhar Prabaraj and K. Sankarananrayanan*
 610
48 Gender issues in conservation agriculture
 — *Rajesh Kumar*
 629
49 Indigenous technical knowledge for resource conservation technologies in pulses production system
 — *Uma Sah*
 635
50 Promoting resource conservation technologies in pulses through Krishi Vigyan Kendra
 — *S.R.K. Singh, U.S. Gautam, Anupam Mishra and Narendra Kumar*
 642

Subject Index
 654
About the Editors
 659