Seed Quality Enhancement
Principles and Practices
Other Related Books

Forage Legumes
Joshi, U.N.

Genetic Improvement of Field Crops
Singh, C.B.

Handbook of Legumes of World Economic Importance
Duke, J.A.

Handbook of Seed Industry (Prospects and its costing)
Ramdeo, A.

Handbook of Seed Science and Technology
Basra, A.S.

Identification of Crop and Weed Seeds
Musil, A.F.

Identification of Weeds and their Control Measures
Singh, Surjeet

Mothbean in India
Kumar, D.

Recent Trends in Disease Management of Fruit and Seeds
Prasad, M.M.

Seed Borne Diseases - Ecofriendly Management
Arya, Arun

Seed Borne Diseases Objectionable in Seed Production and their Management
Bhale, M.S.

Seed Economics: Commercial Considerations for Enterprise Management in Developing Countries
Kugbei, S.

Seed Identification Manual
Martin, A.C.

Seed Technology
Khare, D.
Seed Quality Enhancement
Principles and Practices

K. Vanangamudi
G. Sasthri
S. Kalaivani
A. Selvakumari
Mallika Vanangamudi
P. Srimathi
PREFACE

Seed is the source of future plants or foods, is the storage place of culture of history, is the first link in the food chain, is the ultimate symbol of food security. Seed is the source of life. Seeds are basic in crop production. No agricultural practice can improve a crop beyond the limits set by the seed.

Quality seed is the key for successful agriculture, which demands each and every seed should be readily germinable and produce a vigorous seedling ensuring high yield. “Care with the seed and joy with the harvest” and “Good seed doesn’t cost it always pays” are the popular adage which enlightens the importance of the quality seed. The farmers always very much interested in the best seed management practices which are safe, environmentally sound and scientifically proven technologies. Understandably, in view of the importance of quality seeds in Agriculture, both as a product and as a means of establishing a crop, most attention at all levels of investigation has been directed to crop seeds.

Since seed is a biological entity, deterioration beyond harvest is inevitable. The consequences of low quality seeds are poor germination, low and delayed emergence and weak growth leading to poor field stand and ultimately reflecting on reduced yield. Low productivity could be attributed broadly to use of poor quality seeds. At present to overcome this, several seed enhancement techniques are available for quality upgradation. It has two goals; one is related to seed designing and other to seed functioning.

The rationale for pre-sowing seed enhancement techniques is to mobilize the seeds own resources and to augment them with external resources to get maximum improvement in field stand establishment and yield. To achieve this, several physical, physiological and biochemical treatments are available at present to give value addition to seeds.

Physiological seed treatments that improve seed performance are based primarily on seed hydration and dehydration. Among several non physiological seed treatments, coating or pelleting can
also indirectly improve seed germination, stand establishment and crop productivity.

Keeping in view the importance of quality seed and its value addition, this book entitled “Seed quality enhancement: Principles and practices” has been prepared with expertise of seed scientists. The authors of various chapters have made a remarkable job of writing the chapters in a fitting manner.
Contents

Preface

1. Seed Quality Enhancement
 — G. Sasthiri & S. Kalaivani
 1

2. Classification of Seed Quality Enhancement Treatments
 — S. Kalaivani, A. Selvakumari & R. Revathi
 6

3. Dormancy and Pretreatments
 — M. Djanakiraman, & Mallika Vanangamudi
 23

4. Dormancy Breaking Treatments in Rice, Wheat, Oats, Cotton, Groundnut, Sunflower, Pulses, Bhendi and Gourds
 — S. Vincent, A. Selvakumari & S. Kalaivani
 44

5. Seed Fortification
 — P. Srimathi & S. Sumathi
 66

6. Seed Hardening
 — R. Jerlin & S. Sumathi
 84

7. Seed Priming
 — R. Umarani & R. Vigneshwari
 118

8. Fluid Drilling
 — V. Manonmani & V. Vijayalakshmi
 146

9. Dry Permeation
 — V. Manonmani & J. Srinivasan
 166

10. Pregermination
 — P. Tamilkumar & R. Vigneshwari
 171

11. Seed Pelleting
 — J. Renugadevi & M. Jayanthi
 178

12. Seed Pelleting and Aerial Seeding
 — V. Sivakumar, R. Anandalakshmi, Rekha R. Warrier, B. Gurudev Singh & K. Subramanian
 207
13 Polymer Seed Coating
 — A. Bharathi & J. Srinivasan 233

14 Seed Colouring
 — P. Natesan & V. Vijayalakshmi 260

15 Special Treatments for Seed Upgradation: IDS, PREVAC, Specific Gravity Separation and NIR
 — V. Sivakumar, S. Kalaivani & R. Revathi 277

16 Electric Seed Treatment
 — G. Sasthri, S. Sakthivel & S. Magheswaran 301

17 Magnetic Seed Treatment
 — S. Sakthivel, K. Natarajan & S. Magheswaran 308

18 Irradiation Treatment
 — S. Lakshmi, S. Sakthivel & S. Mageshwaran 316

19 Protective Seed Treatment

20 Biofertilizer Seed Treatment
 — K. Kumutha & S. Poonguzhali 356

21 Biocontrol Agents Seed Treatment
 — S. Kalaivani & M. Prabhu 386

22 Botanical Seed Treatment
 — P.R. Renganayaki & S. Sumathi 401

23 Midstorage Correction Treatment
 — P.R. Renganayaki & A. Sripunitha 419

24 Seed Quality Enhancement in Tree Crops
 — P. Tamilkumar & S. Sumathi 430

25 Indian Seed Industry and Seed Trade
 — V. Sakthirama & R. Dhivya 444

About the Editors 483