Biological and Molecular Approaches in Pest Management

Editors

Balwinder Singh
Director of Research

Ramesh Arora
Senior Entomologist
Department of Entomology

S S Gosal
Director of Research (Retd)

Punjab Agricultural University
Ludhiana – 141 004, India
About the Editors

Dr Balwinder Singh is Director of Research at Punjab Agricultural University, Ludhiana. He did his Ph.D. in Entomology with specialization in Insect Toxicology in 1984 from PAU, Ludhiana. He was Commonwealth Fellow at Rothamsted Research, Harpenden, U.K. for six months. He has more than 28 years experience in teaching and research in the field of pesticide residues. He has handled many research projects funded by various international and national agencies. He has more than 200 publications to his credit. He has also edited three books and contributed 11 chapters in different books. He is acting as a reviewer for number of International Journals related to field pesticide residues. He is associated with a number of professional societies at the National Level and is the President of the Indian Society for Advancement of Insect Science.

Dr Ramesh Arora is Senior Entomologist in the Department of Entomology, Punjab Agricultural University, Ludhiana. He obtained his M.Sc. and Ph.D. in Entomology from the same institute in 1978 and 1990, respectively. He has been working on development and dissemination of IPM technologies for the last more than 35 years. His current research interests include climate resilient IPM and management of insect pests in vegetable crops. He has more than 250 publications including 80 research articles in refereed journals, 15 books and 40 book chapters to his credit. He is associated with a member of professional societies and served as Editor-in-Chief of Indian Journal of Ecology (1996-2003). He is Vice President, Society of Pesticide Science India, General Secretary, Indian Society for the Advancement of Insect Science, and Editor, Entomology Reporter.

Dr S S Gosal served as Director of Research (2010-1014) at Punjab Agricultural University, Ludhiana. He obtained his M.Sc. and Ph.D. degrees in the discipline of Plant Breeding from the same university. He joined PAU as Assistant Breeder in 1984 and contributed towards strengthening the education and research in the area of plant biotechnology. During 1993, he was awarded a unique Biotechnology Career Fellowship by the Rockefeller Foundation, USA for 6 years, to conduct research in the area of transgenesis at University of Nottingham, England and John Innes Centre Norwich, UK for three months each year. He is elected Member/Fellow of three professional societies and member of several other scientific societies. Dr Gosal is founder Director of School of Agricultural Biotechnology at PAU, Ludhiana. To put his ideas into motion he has competitive research grants for more than 20 adhoc research projects. Besides, he has served as a member of Board of Assessors, Australian Research Council, Canberra. He has undergone a rigorous training on environment risk assessment of GM crops at Danforth Centre for Plant Science Research, St. Louis; APHIS, EPA (USDA) and USTDA, Washington DC, USA. His contributions in the field of plant biotechnology can be gauged from the volume of over 155 original research papers in refereed Indian and foreign journals. He has been the examiner, member of the advisory board and selection committees in more than 15 Universities and Institutes. Dr Gosal has co-authored a text book, two dozen chapters in books, many Practical Manuals and has supervised thesis research as major/co-major advisor/member of advisory committee of more than 70 post graduate students.
Despite great advances in agricultural productivity and economic well-being in much of the world over the past 50 years, food insecurity and poverty continue to be serious issues in many regions of the world. Since most of the cultivable land is already under cultivation, future increases in food, feed and fibre production have to be achieved with increased productivity and improved crop protection. Ironically, more than a third of the global agricultural production is lost to the activity of animal pests and diseases. Further, the losses are significantly higher in the tropical areas where the food shortages are already serious. The strategy of exclusive reliance on chemical pesticides for minimizing crop losses caused by pests has led to human health and safety hazards and caused a number of ecological and economic problems. The concept of integrated pest management was propounded to minimize these side-effects. But inspite of its inspirational value, most IPM programmes still include economic threshold level based application of chemical insecticides as a major input. In this context, the wide range of biological and molecular approaches discussed in 15 Chapters in this book offer a plethora of environmentally benign alternatives to these chemical insecticides.

The introductory Chapter outlines the role of molecular techniques in improving the efficacy of a diverse range of pest management options including genetically engineered plants, insects and microorganisms as well as host plant resistance and chemical insecticides. The second Chapter discusses the role the biotechnological approaches have played in development of rice genotypes resistant to planthoppers. The third Chapter highlights the importance of molecular taxonomy in studies on fruit flies. The RNAi has emerged as a powerful gene-silencing technique and its potential for utilization in pest management is revealed in Chapter 4. The persistence of pesticide residues in the environment poses significant ecological risks. Bioremediation is emerging as the method-of-choice for dealing with such residues and its potential is explored in Chapter 5.

Insects, like other organisms, are prone to diseases caused by a diverse range of microorganisms. The exploitation of these microbes as a tool in pest management offers immense possibilities which are highlighted in Chapter 6. The gall midge, a major pest of rice, is notorious for evolving new biotypes to overcome plant resistance genes. Chapter 7 explains how an understanding of the molecular basis of these interactions can help in development of durable gall midge resistant genotypes. The wide range of molecular markers and their applications in entomological research are concised in Chapter 8. The success story of Bt cotton which has transformed India from a net importer to a major exporter of ‘white gold’ is highlighted in Chapter 9. The potential of biotechnological techniques in developing pest-resistant fruit plants is outlined is Chapter 10.
Insects being highly versatile organisms have the ability to develop resistance to any pest management tactic which exerts sufficient selection pressure on their populations. Chapter 11 focuses on the strategies for management of resistance in insects to microbial control agents. Chapters 12 and 13 highlight the role of biological and molecular approaches in management of mites and *Conogethes* spp., respectively. Bee diseases and pests present a serious challenge to commercial apiculture. The utilization of molecular techniques for precise identification of these organisms is explained in Chapter 14. There is now a wide array of techniques available to replace the use of conventional insecticides in IPM programmes. But it is essential that all the non-chemical approaches are combined within the framework of IPM. The emergence of biointensive IPM as the preferred alternative to conventional IPM is explained in the concluding Chapter of the book.

It is hoped that the book will fill the wide gap in literature on utilization of biotechnological approaches in biointensive IPM as an alternative to chemical insecticide based IPM for sustainable insect pest management in future. We trust that you, the reader, will find the subject matter interesting and informative. We hope that this compilation answers questions you might have, and serves to stimulate further development of this fascinating science of pest management.

Balwinder Singh
Ramesh Arora
S S Gosal
Contributors

P K Arora
PAU Regional Research Station
Abohar-152 116, India

Ramesh Arora
Department of Entomology
Punjab Agricultural University
Ludhiana 141 004, India

J S Bentur
Directorate of Rice Research
Rajendranagar,
Hyderabad 500 030, India

Manmeet B Bhullar
Department of Entomology
Punjab Agricultural University
Ludhiana – 141 001, India

D S Brar
School of Agricultural Biotechnology
Punjab Agricultural University
Ludhiana – 141 004, India
(Former Head, Plant Breeding, Genetics & Biotechnology Division
International Rice Research Institute, Manila, Philippines)

P S Burange
Department of Entomology
Punjab Agricultural University
Ludhiana 141 004, India

A K Chakravarthy
Department of Entomology
University of Agricultural Sciences
Bangalore-560 065, India

Chandrashekharaih
Department of Entomology
University of Agricultural Sciences
Bangalore-560 065, India

Pardeep K Chhuneja
Department of Entomology
Punjab Agricultural University
Ludhiana 141 004, India

A K Dhawan
Department of Entomology
Punjab Agricultural University
Ludhiana-141 004, India

B Doddabasappa
Department of Entomology
University of Agricultural Sciences
Bangalore-560 065, India

D Fujita
Plant Breeding, Genetics &
Biotechnology Division
International Rice Research Institute
Manila, Philippines

Arshdeep K Gill
Department of Entomology
Punjab Agricultural University
Ludhiana – 141 001, India

P D Kamala Jayanthi
Division of Entomology and Nematology
Indian Institute of Horticultural Research
Bangalore -560 089, India

K K Jena
Plant Breeding, Genetics &
Biotechnology Division
International Rice Research Institute
Manila, Philippines

S B Kandakoor
Department of Entomology
University of Agricultural Sciences
Bangalore-560 065, India
Uma Kanta
Department of Entomology
Punjab Agricultural University
Ludhiana 141 004, India

Paramjit Kaur
Department of Entomology
Punjab Agricultural University
Ludhiana 141 004, India

Krishan Kumar
PAU Regional Research Station
Abohar-152 116, India

Vijay Kumar
Department of Entomology
Punjab Agricultural University
Ludhiana 141 004, India

Sujan Mamidi
Genomics and Bioinformatics Program
North Dakota State University
Fargo, ND 58102, U.S.A.

Kousik Mandal
Department of Entomology
Punjab Agricultural University
Ludhiana-141 004, India

Prashant Mohanpuria
School of Agricultural Biotechnology
Department of Entomology
Punjab Agricultural University
Ludhiana-141 004, India

G Nagalakshmi
Division of Entomology and Nematology
Indian Institute of Horticultural Research
Bangalore -560 089, India

P C Pathania
Department of Entomology
Punjab Agricultural University
Ludhiana 141 004, India

M A Rashmi
Department of Entomology
University of Agricultural Sciences
GKV, Bangalore-560 065, India

Surinder K Sandhu
Department of Plant Breeding & Genetics
Punjab Agricultural University
Ludhiana-141 004, India

P S Sarao
Department of Plant Breeding and Genetics
Punjab Agricultural University
Ludhiana – 141 004, India

H C Sharma
International Crop Research Institute for the Semi-Arid Tropics (ICRISAT)
Patancheru - 502 324, India

P R Shashank
Department of Entomology
University of Agricultural Sciences
Bangalore-560 065, India

P S Shera
Department of Entomology
Punjab Agricultural University
Ludhiana-141 004, India

Balwinder Singh
Department of Entomology
Punjab Agricultural University
Ludhiana-141 004, India

Kuldeep Singh
School of Agricultural Biotechnology
Punjab Agricultural University
Ludhiana – 141 004, India

Abraham Verghese
National Bureau of Agriculturally Important Insects
Hebbal, Bangalore – 560 024, India
Contents

About the Editors iii
Preface v
Contributors vii
Contents ix

1. **Application of Modern Tools of Biotechnology for Pest Management - Prospects and Limitations** 1-12
 H C Sharma
 1.1. Introduction 1
 1.2. Genetic Transformation of Crop Plants for Insect Resistance 1
 1.3. Genetic Improvement of Natural Enemies 3
 1.4. Genetic Improvement of Biopesticides 3
 1.5. Molecular Marker-Assisted Selection for Insect Resistance 4
 1.6. Understanding Gene Sequence and Function 4
 1.7. Metabolic Pathways 5
 1.8. Inducible Resistance 5
 1.9. Use of Molecular Markers for Diagnosis of Insect Pests and Their Natural Enemies 5
 1.10. Development of New Insecticide Molecules 6
 1.11. Dominant Repressible Lethal Genetic System to Produce Sterile Insects 6
 1.12. Prospects and Limitations 7
 1.13. Conclusions 9
 References 9

2. **Biotechnological Approaches for Enhancing Resistance to Planthoppers in Rice** 13-38
 D S Brar, P S Sarao, Kuldeep Singh, K K Jena and D Fujita
 2.1. Introduction 13
 2.2. Sources of Resistance to Hoppers in Rice 14
 2.3. Breeding Strategy to Enhance Hopper Resistance 17
 2.3.1. Phenotyping for Hopper Resistance 17
 2.3.2. Genetics of hopper resistance 18
2.4. Enhancement of Resistance in Rice to Hoppers through Genetic Engineering
 2.4.1. RNAi-mediated gene silencing 30
2.5. Conclusion 31
References 31

Abraham Verghese, M A Rashmi, A K Chakravarthy, P D Kamala Jayanthi and G Nagalakshmi
3.1. Introduction 39
3.2. Molecular Taxonomy 40
3.3. Molecular Tools in Analyzing Invasion History 44
3.4. Molecular Methodologies in Detection of Gut Bacteria 45
3.5. Transcriptome Analysis 46
3.6. Pest Management 46
3.7. Conclusion 47
References 47

4. RNA Interference Research: Current Status and Future Outlook for Utilization in Insect Pest Management
Prashant Mohanpuria, Surinder K Sandhu and Ramesh Arora
4.1. Introduction 52
4.2. RNAi Vector Construction Strategies 56
 4.2.1. HairpinRNA construct 56
 4.2.2. Fusion PCR 56
4.3. Advantages of Utilizing RNAi in Pest Management 57
4.4. Requirements for Utilizing RNAi for Pest Management 58
 4.4.1. Identification of suitable target in pest-insects 59
 4.4.2. dsRNA delivery methods 59
 4.4.3. Mechanisms of uptake of dsRNA/siRNA by cells and spread of silencing signals in plants and insects 63
 4.4.4. Persistence of silencing effect and life stages of target insects 66
4.5. Conclusions 67
References 68

5. Bioremediation of Pesticides in the Environment
Balwinder Singh and Kousik Mandal
5.1. Introduction 73
Contents

- 5.2. Biodegradation and Bioremediation 75
- 5.3. Strategies for Bioremediation 76
 - 5.3.1. In situ bioremediation 77
 - 5.3.2. Ex situ bioremediation 78
- 5.4. Role of Microbes 80
- 5.5. Factors Affecting Bioremediation of Pesticides 82
- 5.6. Microorganisms in Bioremediation 85
- 5.7. Biotechnology in Bioremediation 86
- 5.8. Phytoremediation 87
- 5.9. Advantages of Bioremediation 88
- 5.10. Disadvantages of Bioremediation 89
- 5.11. Conclusions 89
- References 90

6. Microbial Control in Insect Pest Management: Achievements and Challenges

Ramesh Arora

- 6.1. Introduction 97
- 6.2. Viral Entomopathogens 98
 - 6.2.1. Baculoviruses 100
- 6.3. Bacterial Entomopathogens 108
 - 6.3.1. Genus *Bacillus* 108
 - 6.3.2. Genus *Lysinibacillus* 117
 - 6.3.3. Genus *Paenibacillus* 118
 - 6.3.4. Genus *Brevibacillus* 119
 - 6.3.5. Gram – Negative Bacteria 120
- 6.4. Fungal Entomopathogens 123
 - 6.4.1. Structure and Reproduction 124
 - 6.4.2. Host Range 124
 - 6.4.3. The Infection Process 125
 - 6.4.4. Mycotoxins 125
 - 6.4.5. Role in Pest Management 126
 - 6.4.6. Genetic Improvement 129
- 6.5. Microsporidian Entomopathogens 129
- 6.6. Entomopathogenic Nematodes (EPNs) 130
 - 6.6.1. Important Entomopathogenic Groups 131
 - 6.6.2. Role in Pest Management 132
6.7. Status of Microbial Control in Punjab, India 133
 6.7.1. Indigenous Entomopathogens Detected 133
 6.7.2. Laboratory Studies 135
6.7.3. Field Trials 137
 6.7.4. Safety Evaluation 139
6.8. Conclusions 140
References 140

7. Towards Durable Gall Midge Resistance in Rice 153-160
 J S Bentur
 7.1. Introduction 153
 7.2. Plant Resistance and Biotypes 153
 7.3. Tagging and Mapping Gall Midge Resistance Genes in Rice 154
 7.4. Gene Pyramiding for Durable Resistance 155
 7.5. Virulence Monitoring in Gall Midge Populations 156
 7.6. Molecular Basis of Resistance 156
 7.7. Insect Virulence Genes 158
 7.8. Conclusions 158
References 158

8. Molecular Markers in Entomological Research 161-201
 P S Burange, Sujan Mamidi, P C Pathania and Uma Kanta
 8.1. Introduction 161
 8.2. Types of Molecular Markers 162
 8.2.1. Restriction digestion based markers 162
 8.2.2. PCR based markers 166
 8.2.3. Restriction and PCR based markers 169
 8.2.4. DNA sequencing 170
 8.2.5 Next generation markers 175
 8.3. Applications of Molecular Markers in Entomology 180
 8.4. Conclusions 184
References 185

9. Transgenic Cotton in India: Ten Years and Beyond 202-227
 Vijay Kumar, A K Dhawan and P S Shera
 9.1. Introduction 202
 9.2. Transgenic BT Cotton 203
 9.3. Introduction of BT Cotton in India 204
Contents

9.4. Approved Events and BT Cotton Hybrids in India
9.4.1. Approved Events of Bt Cotton
9.4.2. New Events yet to be Commercialised
9.5. Adoption and Impact Analysis of Bt Cotton
9.5.1. Increase in Area
9.5.2. Increase in Production and Productivity
9.5.3. Pest Scenario on Bt Cotton
9.5.4. Reduction in Insecticide Usage
9.5.5. Economic Benefits
9.5.6. Impact of IPM Strategies in Bt Cotton
9.6. Conclusions

References

10. A Status Update on the Use of Biotechnological Techniques for Combating Insect Pests of Fruit Crops

Krishan Kumar, P K Arora and Kuldeep Singh

10.1. Introduction
10.2. Markers Assisted Breeding
10.2.1. Linkage Map
10.2.2. Gene/QTL Mapping
10.2.3. High Resolution Mapping
10.3. Transgenics
10.3.1. Gene Construct
10.3.2. Methods of Gene Introduction
10.3.3. Selection, Regeneration and Testing of Transgenics
10.4. RNA Interference
10.4.1. Mechanism of RNAi
10.4.2. Status and Factors Affecting the Success of RNAi
10.5. Conclusions

References

11. Pest-Insects Resistance to Microbial Control Agents: Current Status and Management Strategies

Arshdeep K Gill and Ramesh Arora

11.1. Introduction
11.2. Status of Insect Resistance to Microbial Control Agents
11.2.1. _Bacillus thuringiensis_
11.2.2. Resistance to Dipteran - specific _Bacillus_ Toxins

References
11.2.3. Entomopathogenic Viruses 265
11.3. Cross Resistance among Toxins 266
 11.3.1. Cross Resistance Between Cry Proteins 266
 11.3.2. Cross Resistance to \textit{B. thuringiensis} subsp. \textit{israelensis} 267
 11.3.3. Cross-Resistance to \textit{Lysinibacillus sphaericus} 268
11.4. Basis of Insect Resistance to MCAs 268
 11.4.1. Morphological and Behavioral Basis of Resistance 268
 11.4.2. Biochemical and Physiological Basis of Resistance 269
 11.4.3. Genetic and Molecular Basis of Resistance 271
11.5. Stability of Bioinsecticide Resistance 276
11.6. Fitness Costs of Bioinsecticide Resistance 277
11.7. Management of Insect Resistance to MCAs 279
 11.7.1. Management of Resistance to \textit{B. thuringiensis} and its Toxins 279
 11.7.2. Management of Resistance to Bacterial Insecticides in Mosquito Populations 290
 11.7.3. Virulence management of \textit{Cydia pomonella} granulovirus 292
11.8. Conclusions 293
References 293

12. Biological and Molecular Approaches in Management of Mite Pests 312-328
\textit{Paramjit Kaur and Manmeet B Bhullar}
12.1. Introduction 312
12.2. Integrated Mite management 313
 12.2.1. Biological control 314
 12.2.2. Molecular approaches 319
12.3. Conclusions 323
References 323

13. Biosystematics, Molecular Characterization and Management of Shoot and Fruit Borer \textit{Conogethes} spp. (Crambidae: Lepidoptera) 329-343
\textit{A K Chakravarthy, P R Shashank, B Doddabasappa, S B Kandakoor and Chandrashekharaiyah}
13.1. Introduction 329
13.2. Biosystematics 330
13.3. Molecular Characterisation 331
13.4. \textit{Conogethes pinicolalis} Inoue and Yamanaka, 2006: An Evolved Species 333
13.5. Pheromones 333
13.6. Insect Host Plant Interactions 334
Contents

13.7. Bioecology 335
13.8. Feeding Behavior 337
13.9. Alternate Host Plants 337
13.10. Crop Losses 338
13.11. Management 338
13.12. Conclusion 338
References 339

14. Molecular Techniques as Precision Diagnostics for Diseases and Mites of Honey Bees 344-372
Pardeep K Chhuneja and Kuldeep Singh

14.1. Introduction 344
14.2. Beekeeping in India 345
14.3. *A. mellifera* Introduction by PAU: Safeguard against Introduction of Diseases and Enemies 346
14.4. Bee Diseases and Mites 347
14.5. Occurrence of Bee Diseases and Mites in India 348
14.6. Diagnosis of Bee Diseases and Pests 348
14.7. Molecular Techniques as Diagnostics 349
14.7.1. Polymerase chain reaction 349
14.7.2. Multiplex polymerase chain reaction 349
14.7.3. Real-time polymerase chain reaction 349
14.8. Molecular Markers 350
14.9. Steps in Molecular Diagnosis 354
14.9.1. Sample collection 354
14.9.2. RNA/ DNA extraction 354
14.9.3. Designing pathogen specific primers/probes 354
14.9.4. PCR-amplification 354
14.10. Diagnostics Developments for Bee Pathogenic Taxa 355
14.10.1. Bacterial diseases 357
14.10.2. Viral diseases 358
14.10.3. Fungal diseases 362
14.10.4. Microsporidian diseases 363
14.10.5. Differentiation and identification of acarines 364
14.11. Advantages of Molecular Techniques 364
14.12. Conclusions 364
References 364