Rainfed Farming Development in Central India

G.P. Verma
Y.P. Singh
Rainfed Farming Development in Central India
About the Authors

DR. G.P. VERMA, M.Sc. Ag. (Agra), Ph.D. (Iowa, U.S.A) retired as Director Research services/ Director Instruction, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, M.P. after 36 years’ experience of teaching, research and extension of technology to farmers’ fields. Besides merit scholarships of Agra University and U.P. Govt., he was awarded Rockefeller Foundation Fellowship for higher studies in U.S.A.

His contribution to watershed based development of Rainfed/Dry farming and reclamation and control of gullies/ravines is outstanding, and in recognition of this he bagged several assignments in India and abroad from Govt. of India, Indian Council of Agricultural Research, Consultancy organizations like Consulting Engineering Services, Water and Power Consultancy Organization (WAPCO), Indian Institute of Public Opinion and Indian Institute of Public Administration. He served as Dry Farming Expert to Govt. of Paraguay for one year (1981-82), and as a member of Team of Experts to Iraq Govt. for planning and development of dry farming. He also served as an Expert to evaluate the Intensive Extension and Research Project of Gujarat State, as well as a member of ICAR Appraisal Team for National Agricultural Research Project. He had the honour of membership of Expert Committee-cum-Jury for several awards. He has been President, Gwalior Chapter of Indian Society of Soil Science (2005-12) and Chairman, Consortium Advisory Committee, National Agriculture Innovation Project, Component III, JNKVV Jabalpur M.P. and Consultant, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya Project “Identification of Efficient Integrated Modules for Sustainable Management of Ravines (Chambal) and Carbon Sequestration for climate Resilience in Madhya Pradesh”. He was awarded as “Agriculture Scientist-2015 by Gwalior Vikas Samiti, Gwalior and was also conferred ‘Life Time Achievement Award-2015, by Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, M.P.

DR. Y.P. SINGH, PG and Ph. D. in Soil Science from Agra University, Agra, U. P. worked for 22 years in various capacities in different Institutes, such as ICAR-RCER, Patna (Bihar), Krishi Vigyan Kendra (KVK), Banasthali University, Banasthali (Rajasthan), Central Soil Salinity Research Institute, Karnal (Haryana). At present he is working as Chief Scientist and in-charge, All India Co-ordinated Research Project on Irrigation Water Management, Z.A.R.S., Morena, R.V.S. Krishi Vishwa Vidyalaya, Gwalior M.P. He has more than 100 research and conference papers, published in National and International Journals besides popular articles, leaflets, booklets, books, book chapters etc. Further he is working as Co-ordinator in two projects, Principal Investigator in four projects and Co-Principal Investigator in four Projects funded by ICAR, World Bank, DST and State Government. He evolved several innovative technologies adopted by a large number of beneficiaries.

He participated in many National and International Seminars/ workshops and training programmes. He also guided six PG and Ph. D. students and got several Honours and Awards. He also worked as councilor of Indian Society of Soil Science for two years. He is also life member of five national societies.

Presently he is working as Principal Investigator in Tribal sub-plan project on management of irrigation water, National Initiative for Climate Resilient Agriculture funded by ICAR, Co-Principal Investigation of MPWSRP funded by M.P. Government and “Identification of Efficient Integrated Modules for Sustainable Management of Ravines (Chambal) and Carbon Sequestration for Climate Resilience in Madhya Pradesh” funded by ICAR.
Rainfed Farming
Development in Central India

Dr. G.P. Verma
Ex. Director Research, (JNKVV, Jabalpur, MP),
108-Balwant Nagar, Gwalior-474 002, M.P.

Dr. Y.P. Singh
AICRP-IWM, ZARS-R.V.S. Krishi Vishwa Vidyalaya,
Morena-476 001 M.P.
Email- aicrpmorena@gmail.com
It is a fact that the benefits of Green Revolution ushered in mid-sixties of the last century seem to vanish if monsoon rains are not timely and normal. Our Prime Minister, therefore, rightly emphasised the need for second Green Revolution. Fortunately seventy percent part of India receives an annual rainfall greater than 500 mm which if managed appropriately can definitely result in ushering an era of Ever Green Revolution in rainfed areas which extend over about two thirds of the total cultivated area of India, but notably suffer from twin problems of low and instable crop-yields. The prospects for the development of rainfed farming are bright as very useful information on crop-plans, their management practices has been made available by All India Coordinated Research Project on Dryland Agriculture (ICAR), land and rain-water management practices on watershed basis have been evolved by Operational Research Projects, soil and water conservation research centres, watershed development projects and State Agricultural Universities. Based on their long experience, the authors have done a commendable job of compiling the available information on land and water management, appropriate crop-plans and integrated farming systems so as to synthesize various components into a technology for the holistic and sustainable development of rainfed farming in various agro-climatic zones of Central India. Also, only those practices have been emphasized which have been successfully tested on farmers’ fields.

I have every hope that the book entitled “Rainfed Farming Development in Central India” will serve as a good field manual for workers of the Department of Agriculture, as a comprehensive treatise on rainfed farming/watershed management and thus a valuable teaching material for undergraduate and post graduate courses of rainfed farming/watershed management offered by Agricultural Universities. Besides, the book gives an insight into problems and their solutions in respect of rainfed farming to those responsible for planning and guiding the development projects on rainfed farming/watershed management.

(Dr. A. K. Singh)
Vice Chancellor,
R.V.S. Krishi Vishwa Vidyalaya,
Raja Pancham Singh Marg,
Gwalior-474 002 (MP)
The importance of rainfed farming in Central India can not be over emphasized as development of canal irrigation had taken place at snails speed and tube-wells and open dug wells were the main source irrigation in Uttar Pradesh, Madhya Pradesh and Bihar, resulting in excessive exploitation of underground water. Further, a significant decrease in number of tanks has aggravated the situation by a fall in recharge of underground water. This points out the urgent need of rainwater management particularly the aspect of run-off collection in different ways for tank/farm pond irrigation, domestic use, and recharging underground water. This is really the strategy of developing the rainfed farming on watershed basis. Under All India Coordinated Research Project on Dryland Agriculture launched by Indian Council of Agricultural Research throughout the country in 1969-70, good research work was conducted to identify (i) most remunerative crop/variety, (ii) nutrient requirement of crops/cropping systems, (iii) most remunerative cropping sequence, (iv) more remunerative intercropping system, (v) alternative land use and (vi) water balance studies: run-off collection and recycling. Further, the ICAR also sanctioned 23 Operational Research Projects (ORPs) to test and transfer the research results on important problems of crop production and livestock to farmers' fields. The results of All India Coordinated Research Project on crop-production and management practices, of operational research and development projects on watershed management, relevant information available in various publications, results of rain-water management research conducted by various State Agricultural Universities and other Institutes and valuable information from personal communications of many senior scientists, have all been synthesized into a technology for holistic and sustainable development of rainfed farming and presented in this book entitled Development of Rainfed Farming in Central India.

The book has 10 chapters viz: (1) Problems and prospects of rain-fed farming, (2) Present status and strategy of rain-fed farming development, (3) Land and water resources, (4) Technology for watershed based rain-fed farming development, (5) Land and water management practices, (6) Improvement of productivity of rain water, (7) Cropping systems and crop management practices, (8) Planning for aberrant weather conditions and drought management, (9) Farm machinery and implements and (10) Integrated farming systems for livelihood security. In support of various recommendations and conclusions drawn, reliable
data have been presented in 62 tables. Further, the book is well illustrated through 24 figures/sketches.

While land and rain water management practices recommended in the book are applicable to whole country except arid regions, crop husbandry and alternate land use practices are locality specific. That is why the title of the book is “Rainfed Farming Development in Central India”.

It is hoped that the book will serve as (i) a manual for field workers of the Department of Agriculture, (ii) a good teaching media for undergraduate and post graduate courses on Watershed Management/Dry farming offered by Agricultural Universities and (iii) a thought provoking material for those responsible for planning and executing development projects on rain-fed/dry farming.

G. P. Verma
Y. P. Singh
ACKNOWLEDGEMENT

We thankfully acknowledge the contributions of all the scientists who have worked or are still working under All India Coordinated Research Project on Dryland Agriculture (Indian Council of Agricultural Research) particularly those at Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya Campus College of Agriculture, Indore, Madhya Pradesh. We are really grateful to Dr. A. Alam and Mr. V.S. Kale for their valuable contributions on ‘Farm Implements’ and ‘Run-off management’, respectively. Our heartfelt thanks are due to British Team Leaders, viz. Prof. N. W. Hudson, Soil Conservation Engineer and Prof. T. F. Shaxson, Land Husbandry Expert, who guided the scientists of Indo-British Operational Research Project (Called Indo-UK Dry Farming Project later on) to implement the land and rain water management programme of the project successfully on farmers’ fields, although the required technology for Vertisol and associated soils under high rainfall conditions was not available at that time. Thanks are also due to Dr. R. P. Singh, Dr. J. S. Samra, Dr. Raj K. Gupta, Dr. Gurabachan Singh, Dr. A. K. Sikka, Dr. V. S. Tomar, Dr. V. N. Sharda, Dr. S. S. Tomar, Dr. J. C. Dagar, Dr. M. P. Jain, Engr. A. K. Singh and others whose significant contributions to rainfed farming have been cited in the book. We are indebted to Dr. A. K. Singh, Hon’ble Vice Chancellor, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya for his valuable suggestions and guidance after going through the manuscript and bless us with a Foreword to this book. Last but not the least, we are grateful to Mr. Alok Kulshresth, Nikhar Printing Press, Jagannath Chamber, Padav, Gwalior, M.P. for the hard work he has put in making drawings and sketches to illustrate the book through figures.

G. P. Verma
Y. P. Singh
LIST OF ABBREVIATIONS

AICRPDA All India Coordinated Research Project on Dryland Agriculture
CGWB Central Ground Water Board
CIMMYT International Centre for Maize and Wheat Improvement
CRIDA Central Research Institute of Dryland Agriculture
CSARD Centre of Sustainable Agriculture and Rural Development
CSWCRTI Central Soil and Water Conservation Research and Training Institute
DES Directorate of Extension Services
DFW & AD Department of Farmers Welfare and Agriculture Development
DFP Dry Farming Project
IARI Indian Agricultural Research Institute
IASRI Indian Agricultural Statistics Research Institute
ICAR Indian Council of Agricultural Research
ICRISAT International Crop Research Institute for Semi-arid Tropics
IGKVV Indira Gandhi Krishi Vishwa Vidyalaya
JNKVV Jawaharlal Nehru Krishi Vishwa Vidyalaya
NAIP National Agriculture Innovation Project
NATP National Agriculture Technology Project
NBSSLUP National Bureau of Soil Survey and Land Use Planning
NCHSE National Centre for Human Settlement and Environment
NRAA National Rainfed Areas Authority
RVSKVV Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya
RWC Rice-Wheat Consortium
WAPCOS Water and Power Consultancy Services
YKGPVS Yeshwant Krishi Gram and Panlot Vikas Sansthan
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Central India and Dryland Research Centres</td>
<td>16</td>
</tr>
<tr>
<td>2.</td>
<td>Agroclimatic zones of Central India</td>
<td>51</td>
</tr>
<tr>
<td>3.</td>
<td>A typical Watershed</td>
<td>61</td>
</tr>
<tr>
<td>4.</td>
<td>Design of bench terrace</td>
<td>91</td>
</tr>
<tr>
<td>5.</td>
<td>Effect of slope on terrace width</td>
<td>93</td>
</tr>
<tr>
<td>6.</td>
<td>Effect of soil depth on maximum width of terrace</td>
<td>95</td>
</tr>
<tr>
<td>7.</td>
<td>Cross section of Water Diversion bund</td>
<td>96</td>
</tr>
<tr>
<td>8.</td>
<td>Alignment of Contour and Graded bunds</td>
<td>98</td>
</tr>
<tr>
<td>9.</td>
<td>A. Gabion</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>B. Gabion in rainy season.</td>
<td>103</td>
</tr>
<tr>
<td>10.</td>
<td>Huge Gabion to reclaim deep gully</td>
<td>104</td>
</tr>
<tr>
<td>11.</td>
<td>Different components of a gabion.</td>
<td>106</td>
</tr>
<tr>
<td>12.</td>
<td>V-shaped waterway.</td>
<td>110</td>
</tr>
<tr>
<td>13.</td>
<td>A to C. Trapezoidal Waterway</td>
<td>111</td>
</tr>
<tr>
<td>14.</td>
<td>Dimensions of a Trapezoidal Waterway for different sizes of drainage areas</td>
<td>112</td>
</tr>
<tr>
<td>15.</td>
<td>Final shape of a Parabolic Waterway</td>
<td>113</td>
</tr>
<tr>
<td>16.</td>
<td>Strip cropping</td>
<td>117</td>
</tr>
<tr>
<td>17.</td>
<td>Diagram of Broad Bed and Furrow system</td>
<td>121</td>
</tr>
<tr>
<td>18.</td>
<td>Submersible Check Dam</td>
<td>135</td>
</tr>
<tr>
<td>19.</td>
<td>Run-off Collection Tank</td>
<td>136</td>
</tr>
<tr>
<td>20.</td>
<td>Drought prone areas</td>
<td>170</td>
</tr>
<tr>
<td>21.</td>
<td>Deshi Plough</td>
<td>184</td>
</tr>
<tr>
<td>22.</td>
<td>Deshi Iron Plough</td>
<td>185</td>
</tr>
<tr>
<td>23.</td>
<td>Deshi Plough with seeding attachment.</td>
<td>190</td>
</tr>
<tr>
<td>24.</td>
<td>Zero-till seed-cum-fertilizer drill</td>
<td>192</td>
</tr>
</tbody>
</table>
CONTENTS

1. PROBLEMS AND PROSPECTS OF RAINFED FARMING 1-14
 1.1 Rainfed Farming versus Dry Farming 1
 1.2 Importance of Rainfed Farming 2
 1.3 History of Rainfed Farming in India 2
 1.4 Great Potential 6
 1.5 Problems of Rainfed Farming 6
 1.6 Early Research Efforts 9
 1.7 Establishment of Soil Conservation Research Centres 10
 1.8 Initiation of All India Coordinated Research Project on Dryland
 Agriculture and its Development Phases 11

2. PRESENT STATUS AND STRATEGY 15-29
 2.1 Land and Rain-water in Central India 15
 2.2 Present Land and Rain-water Management Practices 16
 2.3 Present Cropping Pattern and Practices 19
 2.4 Low Yields of Rainfed Crops 20
 2.5 Present Cropping Pattern Inappropriate 21
 2.6 Low Yields of Wheat and Paddy 22
 2.7 Chronically Drought Affected Areas 22
 2.8 Strategy of Rainfed Farming Development 23

3. LAND AND WATER RESOURCES 30-58
 3.1 Land Resource 30
 3.2 Water Resources 38
 3.3 Climate 49
 3.4 Crop Zones 50
 3.5 Agro-climatic Zones 50
Contents

6.10 Site of Tanks and Farm Ponds 134
6.11 Design of Tank 137
6.12 Specifications for Malwa Region 137
6.13 Siltation of Tanks/Farm-ponds 138
6.14 Conservation of Stored Water 139
6.15 Recycle of Collected Run-off 139
6.16 Run-off Recycling and Productivity of Rice 141
6.17 Farm-pond/Tank Based Intensive Farming Systems 142
6.18 More Intensive Pond-based Integrated Farming Systems 144

7. CROPPING SYSTEMS AND MANAGEMENT PRACTICES 146-159
7.1 Untapped Yield Reservoir of Dry-land Crops 146
7.2 Appropriate Cropping System 147
7.3 Improved Package of Practices 152
7.4 Recommendations for Different Agro-climatic Regions 156

8. PLANNING FOR ABERRANT WEATHER CONDITIONS AND DROUGHT MANAGEMENT 160-177
8.1 Aberrant Weather 161
8.2 Early Onset of Monsoon Followed by a Gap and Early Withdrawal 161
8.3 Early Onset of Monsoon without Gap but Early Withdrawal 161
8.4 Early Onset of Monsoon Without Big Gap but Late Withdrawal 162
8.5 Normal Onset Without Gap but Early Withdrawal 162
8.6 Normal Onset with a Big Gap and Late Withdrawal 162
8.7 Late Onset of Monsoon Without Big Gap but Early Withdrawal 163
8.8 Late Onset of Monsoon with a Big Gap and Late Withdrawal 163
8.9 How to Start 163
8.10 Advance Actions and Precautionary Measures 164
8.11 Selection of Crops 164
8.12 Selection of Crop Varieties 166
8.13 Rainfed Crops for High Moisture Regime Areas 167
8.14 Date of Sowing 167
8.15 Drought Prone Areas 170
8.16 What is Drought? 170
8.17 Drought Management 173
8.18 Long Term Measures or Preventive Steps 176

9. FARM MACHINERY AND IMPLEMENTS 178-196
9.1 Tillage 178
9.2 Various Tillage Systems 180
9.3 Conventional Tillage vs. Minimum Tillage 182
9.4 Tillage Implements 183
9.5 Seeding and Planting Implements 189
9.6 Bullock Drawn Seeding Equipment 189
9.7 Tractor Mounted Zero-Till Seed-cum-Fertilizer Drill 191
9.8 Inter-culture Tools and Equipment 192
9.9 Harvesting Tools 194
9.10 Animal and Tractor Drawn Digger 194
9.11 Threshers 194
9.12 Other Equipment 195

10 INTEGRATED FARMING SYSTEMS FOR LIVELIHOOD SECURITY 197-215

10.1 Traditional Mixed Farming 198
10.2 Other Livestock Based Integrated Farming Systems 206
10.3 Bee Keeping 210
10.4 Lac Cultivation 211
10.5 Livelihood security through Mushroom Production 213
10.6 Farm-pond/Tank Based Integrated Farming Systems 214
10.7 Integrated Farming Systems for Livelihood Security in Rain-fed Micro-watersheds of Jharkhand 215

BIBLIOGRAPHY 216-224