Mycotoxins Problem and its Management

S.M. Reddy
S. Girisham
V. Krishna Reddy
M. Surekha
Department of Botany and Microbiology
Kakatiya University
Warangal-506 009
PREFACE

Mycotoxins, secondary metabolites of storage moulds, have been receiving increasing attention in view of their undisputed role in public health. Many books appeared, conferences in different parts of the globe are being conducted which clearly indicate direct relation between the incidence of mycotoxigenic fungi, degree of mycotoxin contamination and their prevalence revealed their relation to some of the human ailments. Out of several mycotoxins, aflatoxins, ochratoxins A and fumonisins are posing serious health hazards specially in Asian countries. Inspite of intensive and extensive studies related to mycotoxins the problems becoming intricate and intriguing and decisive conclusions could not be drawn and clear cut solutions are provided.

There is no way of establishing the incidence of human mycotoxicoses and their degree of incidence. Further, there are no epidemiological studies which enable us to draw decisive conclusions but we are forced to draw conclusions only on circumstantial evidences. It is now visualized that the natural incidence of mycotoxins contamination and health problems are not to the same degree to that of in vitro studies. This has been attributed to the complexity of environment in which we are living. Thus what we conclude based on laboratory studies may not hold true to that happening in nature. One has to be cautious in deriving conclusions based on in vitro studies.

In order to high light the possible eventualities and in the context of Indian conditions, it was felt the need of assessing and prepare a comprehensive account so that person interested may get clear understanding of the problem and probe further in this direction to get better insight.

Present attempt is made to assess developments in the subject and project the future problems in the light of changing conditions with special reference to India. This book is divided into two parts. First part deals with general aspects of mycotoxins covering areas of natural incidence, taxonomy of mycotoxigenic fungi, analytical techniques, and mechanism of mycotoxins, toxicity epidemiology and management of mycotoxins. The second part deals with individual mycotoxins. The detailed account of producing organisms, detection, biological activity and management practices specific to that of mycotoxins are discussed in individual chapters. An attempt has been made to discuss mycotoxins problem with reference to Indian conditions. In view of
voluminous literature only comparatively recent and relevant literature is quoted and may be some important works might have been omitted.

The task of this magnitude cannot be accomplished unless and until help and encouragement received from different corners. Our heartfelt thanks are to our late revered teacher Prof. K.S. Bilgrami who introduced me to this area of research and motivated for further research. Our thanks are due to band of students who did stupendous work and struggled in the field which formed the basis for this book. We are also thankful to authors and publishers from which we have borrowed the material. Our profuse thanks are due to research scholars specially Dr. Supriya Sarkar. Mr. Ranjith Kumar R. and Shilpa, P. who toiled in the preparation of the manuscript. The grant received from Department of Science and Technology, New Delhi in the form of users programme is gratefully acknowledged.

Date:
Warangal

Authors
CONTENTS

Preface iii

PART-A

Chapter 1: INTRODUCTION 1-38

1.1 Genesis of the problem 1
1.2. Natural incidence of mycotoxins in different food commodities 21
 1.2.1. Cereals 24
 1.2.2. Pulses 27
 1.2.3. Oil seeds 28
 1.2.4. Dry fruits and spices 29
 1.2.5. Milk and milk products 30
 1.2.6. Feeds 30
 1.2.7. Fodders 30
 1.2.8. Sea foods 31
1.3. High risk areas for mycotoxins in India 31
1.4. Weather conditions and mycotoxins 31
1.5. Management of mycotoxins 32
 1.5.1. Prevention of mould growth 33
 1.5.2. Detoxification 34
 1.5.3. Dietary modifications 35
 1.5.4. Resistant varieties 36
 1.5.5. Biological control 36
1.6. Limits and Regulations for Mycotoxins 37
1.7. Current research Scenario 37

Chapter – 2: TAXONOMY OF MYCOTOXIGENIC FUNGI 39-111

2.1 Introduction 39
2.2. Key to the identification of mycotoxin producing fungi 42
2.3. Morphology of mycotoxicogenic fungi 50
 2.3.1. Aspergillus 50
 2.3.2. Penicillium 64
 2.3.3. Fusarium 83
 2.3.4. Alternaria 98
2.3.5. *Stachybotrys* 100
2.3.6. *Myrothecium* 103
2.3.7. *Trichoderma* 105
2.3.8. *Trichothecium* 107
2.3.9. *Pithomyces* 107
2.3.10. *Phoma* 107
2.3.11. *Phomopsis* 108
2.3.12. *Diplodia* 108
2.3.13. *Chaetomium* 109

Chapter – 3: ANALYTICAL TECHNIQUES 112-133

3.1. Sampling strategies 114
3.2. Methods of Analysis 114
3.3. Units of Concentration 118
3.4. No Detectable Amounts (NDA) 118
3.5. Chemical Analysis 119
 3.5.1 Extraction 119
 3.5.2 Clean-up 119
 3.5.3 Work-up 120
 3.5.4 Detection and Quantification 121
 3.5.5 Confirmation 122
 3.5.6 Determination of purity and concentration of mycotoxin standards 123
3.6. Immunological techniques 125
 3.6.1. Radio immunoassay 126
 3.6.2. Enzyme immunoassay 127
 3.6.3. Immunoscreening methods 129
 3.6.4. Complementation of immunoassays with chemical methods 131
 3.6.5. Other newly developed immunochemical methods 132

Chapter 4: TOXICOLOGY 134-151

4.1. Acute and chronic toxicity 134
4.2. Cytotoxicity 134
4.3. Carcinogenicity 137
4.4. Mutagenicity 137
4.5. Teratogenicity 137
4.6. Tremoregenicity 137
4.7. Immunotoxicity 137
4.8. Haematotoxicity 137
4.9. Induction of apotocicity 138
4.10. Antitumor properties 139
4.11. Antimicrobial activity 139
Contents

4.12. Insecticidal activity 139
4.13. Phytotoxicity 139
 4.14.1. Receptors 140
 4.14.2. Metabolic activation and detoxification 141
4.15. Nucleic acids as receptors 141
4.16. Lesions on proteins 142
4.17. Target sites and biological effects 142
4.18. Inhibition of energy production 143
 4.18.1. Cellular resperation 144
 4.18.2. Uncoupling of oxidation phosphorylation 144
 4.18.3. Alteration of membrane permeability 144
4.19. Inhibition of macromolecular synthesis 145
 4.19.1. Inhibition of DNA synthesis 145
 4.19.2. Alteration in RNA metabolism 146
 4.19.3. Inhibition of protein synthesis 146
 4.19.4. Alteration of immune responses 146
 4.19.5. Inhibition of gluconeogenesis 147
 4.19.6. Effects on lipid metabolism 147
4.20. Effect on central nervous system 147
4.21. Modifications of cytoskeletons 148
4.22. Hormonal effects 148
 4.22.1. Activity of steroid hormones 148
 4.22.2. Estrogen effect of zearalenone 149
4.23. Carcinogenic effects 149
 4.23.1. Initiation 150
 4.23.2. Promotion 150

Chapter 5: EPIDEMIOLOGY 152-164

 5.1. Ergot 154
 5.2. Aflatoxins 155
 5.3. Trichothecenes 157
 5.4. Fumonisins 159
 5.5. Patulin 161
 5.6. Zearalenone 162
 5.7. Ochratoxins 162

Chapter 6: MANAGEMENT 165-198

 6.1. Prevention of mould contamination and growth 167
 6.1.1. Primary prevention 168
 6.1.2. Secondary prevention 168
6.1.3. Tertiary prevention 168
6.1.4. Methods of prevention 169
6.2. Improved farm management 172
6.3. Separation of infested grains 172
6.4. Volatile compounds 172
6.5. Food preservatives 173
6.6. Antioxidants 173
6.7. Polyamine biosynthetic inhibitors 174
6.8. Antagonists 174
6.9. Genetic engineering approach 177
6.10. Rapid screening techniques 178
6.11. Control of environmental conditions 178
 6.11.1. Moisture 178
 6.11.2. Temperature 179
 6.11.3. Modified Gaseous Atmosphere 180
6.12. Detoxification of toxic products 180
 6.12.1. Physcial methods 182
 6.12.2. Chemical methods 183
 6.12.3. Biological methods 184
6.13. Quality control and regulatory measures 185
6.14. HACCP in mangament of mycotoxins 193
 6.14.1. Pre-harvest and Post harvest (Field) situation 193
 6.14.2. Codes of practice 195
 6.14.3. Post-harvest control 196
6.15. The integrated approach 197

PART-B

Chapter 7 CARCINOGENIC MYCOTOXINS 199-249

7.1. Aflatoxins 199
 7.1.1. Physico-chemical characteristics 199
 7.1.2. Organisms 202
 7.1.3. Biosynthesis and Metabolism 204
 7.1.4. Isolation and Detection 204
 7.1.5. Natural incidence 219
 7.1.6. Biological activity 219
 7.1.7. Factors affecting AFB1 toxicity 226
 7.1.8. Management 226
7.2. Fumonisins 227
 7.2.1. Physico-chemical characteristics 228
Chapter 10: Mycotoxins Problem and its Management

10.2. Physico-chemical characteristics 289
10.3. Organisms 291
10.4. Isolation of and quantification 291
 10.4.1. Penitrems 291
 10.4.2. Janthitrems 294
 10.4.3. Aflatrem 295
 10.4.4. Paxilline 295
 10.4.5. Paspaline, Paspaliceine and Paspalinine 295
 10.4.6. Paspalitrems A and B 296
 10.4.7. Territrems 296
 10.4.8. Fumiteremorgin 296
10.5. Natural Incidence 297
10.6. Structure and Activity relationship 297
10.7. Biological Activity 297
10.8. Penitrems 299
 10.8.1. Physico-chemical characteristics 299
 10.8.2. Organisms 299
 10.8.3. Isolation and Detection 300
 10.8.4. Natural incidence 300
 10.8.5. Production 300
 10.8.6. Biosynthesis 302
 10.8.7. Biological activity 303
 10.8.8. Management 306

Chapter 11: PATULIN 308-321

11.1. Physico-Chemical properties 308
11.2. Organisms 309
11.3. Biosynthesis 310
11.4. Isolation and Detection 312
 11.4.1. Chemical methods 312
 11.4.2. Paper chromatography 312
 11.4.3. Thin-layer chromatography 312
 11.4.4. Gas liquid chromatography 314
 11.4.5. High performance liquid chromatography 314
 11.4.6. Bioassay 316
11.5. Natural Incidence 316
11.6. Biological activity 318
 11.6.1. Animal diseases 319
 11.6.2. Phytotoxicity 320
 11.6.3. Health hazards in man 320
11.7. Pharmacokinetics 320
Chapter – 12. CYTOTOXIC MYCOTOXINS 322-356

12.1 Isolation and detection 327
 12.1.1. Cytochalasins A and B 327
 12.1.2. Cytochalasins C and D 328
 12.1.3. Cytochalasin E 329
 12.1.4. Cytochalasin F 331
 12.1.5. Cytochalasin G 331
 12.1.6. Cytochalasin H and J 333
 12.1.7. Cytochalasins K, L and M are produced by *Chalara microspora* 333
 12.1.8. Zygosporins D, E, F and G 333
 12.1.9. Aspochalasins A, B, C and D 334
 12.1.10. Deoxaphomin, proxiphomin and protophomin 335
 12.1.11. Chaetoglobosins and Acetylchaetoglobins 336

12.2. Biological activity 340
 12.2.1. Cytokinesis 342
 12.2.2. Locomotion and Cytoplasmic streaming 342
 12.2.3. Mutagenicity and Teratogenicity 342
 12.2.4. Cytophysiological effects 343
 12.2.5. Attachment and Adhesion 343
 12.2.6. Morphogenesis 343
 12.2.7. Endocytosis 343
 12.2.8. Exocytosis-I 346
 12.2.9. Immunological functions 346
 12.2.10. Viral infectibility 347
 12.2.11. Metabolism and Macromolecular Synthesis 347
 12.2.12. Alterations in membrane structure and function 348
 12.2.14. Structure and function 349

Chapter – 13: ESTROGENIC MYCOTOXINS 357-375

13.1. Zearalenone 357
 13.1.1. Physico-chemical characteristics 357
 13.1.2. Producing organisms 359
 13.1.3. Biosynthesis 359
 13.1.4. Isolation and Detection 361
 13.1.5. Natural Incidence 366
 13.1.6. Biological Activity 368
 13.1.7. Mechanism of action 371
 13.1.8. Management 374
Chapter 14: GASTROINTESTINAL MYCOTOXINS

14.1. Physico-chemical characteristics
14.2. Isolation and Detection
14.3. Factors influencing
14.4. Biological activity
14.5. Metabolism and pharmacokinetics
14.6. Management

Chapter 15: MISCELANEOUS MYCOTOXINS

15.1. Alternaria toxins
 15.1.1. Organisms
 15.1.2. Physico-chemical characteristics
 15.1.3. Alternariol, alternanol and alternariol monomethylether production
 15.1.4. Isolation and detection
 15.1.5. Tenuazonic acid
 15.1.6. Production
 15.1.7. Isolation and detection
 15.1.8. Natural incidence
 15.1.9. Biological activity

15.2. Sporidesmins
 15.2.1. Chemistry of Sporidesmins
 15.2.2. Natural Incidence
 15.2.3. Biological activity

15.3. Sterigmatocystin
 15.3.1. Physico-chemical characteristics
 15.3.2. Organisms
 15.3.3. Isolation and Detection

15.4. Slaframine
 15.4.1. Extraction and detection
 15.4.2. Biosynthesis
 15.4.3. Biological activity