Agrochemicals in Plant Disease Management
AGROCHEMICALS IN
PLANT DISEASE MANAGEMENT
ABOUT THE AUTHOR

Dr. N.G. Ravichandra, Professor of Plant Pathology and Scheme Head, All India Co-ordinate Research Project on Plant Parasitic Nematodes at the Department of Plant Pathology, University of Agricultural Sciences, GKVK Campus, Bengaluru, Karnataka, India. He is involved in teaching, research and extension activities.

Dr. N.G. Ravichandra has over 224 scientific publications to his credit in national and international journals. He has authored five text books, contributed chapters to nine text books, authored 10 books in Kannada and edited about five books and 12 chapters. He is an active life member of professional societies including Nematological Society of India, Indian Phytopathological Society, Society of Mycology & Plant Pathology, National Environmental Science Academy and Institute of Agricultural Technology. Being recognized with the duties of the Editor, Dr. N.G. Ravichandra has been rewarded for the prestigious international journal ‘Research Journal of Plant Pathology’. He is an eminent member of the Indian Phytopathological Society, and the Editor for the popular journal ‘Indian Phytopathology’.

Dr. N.G. Ravichandra has participated and presented original papers on various aspects of plant diseases in several national and international conferences. He has undergone advanced training programs sponsored by the Department of Biotechnology & Indian Council of Agricultural Research, New Delhi, India. He has operated research projects funded by the Department of Bio-Technology & Indian Council of Agricultural Research, New Delhi, India as Principal Investigator and Co-Principal Investigator. He was involved in developing eight technologies for the management of root-knot nematodes infecting tomato, brinjal and rice, which have been included in the Package of Practices of University of Agricultural Sciences, Bengaluru, Karnataka, India.
AGROCHEMICALS IN PLANT DISEASE MANAGEMENT

Dr. N.G. RAVICHANDRA

Professor of Plant Pathology & Scheme Head, AICRP (Nematodes)
Department of Plant Pathology
University of Agricultural Sciences, GKVK
Bengaluru-560 065, Karnataka, India
TO
DEEPTHI
PREFACE

A vast number of plant pathogens cause diseases in crops. They are difficult to control as they form complex diseases and their populations vary with time, space and genotype. They evolve, often overcoming the resistance that may have been the hard-won achievement of the plant breeder. Use of chemicals has been critical in preventing losses due to plant diseases and is one of the most popular and most sought after disease management practices.

Agrochemicals have been used against plant diseases since the 1940s. During the previous decades, there has been a tremendous development in all aspects related to agrochemicals. The agrochemical industry has come a long way with a unique shape and the release of a wide range of chemicals exhibiting novel modes of action. Such latest information on these developments is not much familiar either to academicians or students. Partly this ignorance has been due to the non-availability of a standard publication which would furnish all the aspects related to major agrochemicals used to combat plant diseases. In addition, various courses related to the chemicals used in plant disease management are being offered at most agricultural and horticultural universities, as per the syllabus prescribed by the Indian Council of Agricultural Research (ICAR), New Delhi. Readers, particularly students are in search of a complete book that covers the entire syllabus on agrochemicals. This book fulfils these requirements.

The main objective of the book is to provide detailed and the latest information on three major agrochemicals (fungicides, bactericides/antibiotics and nematicides) in a systematic and easily understandable format as a ready reference to its readers. It consists of nine chapters: “Agrochemicals in Plant Disease Management - Current Scenario, History and Development of Agrochemicals, Formulations, Application and Phytotoxicity of Agrochemicals, Classification and Modes of Action of Agrochemicals, Registration and Regulation of Agrochemicals, Safe Handling and Use of Agrochemicals, Compatibility and Persistence of Agrochemicals, Pollution and Hazards by Agrochemicals and New Generation Fungicides”, a glossary of frequently used key terms and a detailed bibliography. Annexures related to few essential aspects of agrochemicals have also been included. Relevant photographs, illustrations, tables, prominent trade names of agrochemicals and other useful information add colour to the contents.

It is sincerely hoped that the book would introduce this fascinating subject to the students, serve as a source book for the faculty, academicians, scientists and serve as a handbook to the extension personnel, private agrochemical firms, seed industries, agrochemical dealers, nursery holders, officers of the State Departments of Agriculture, Horticulture, Sericulture & Forestry, policy makers and all those interested in crop disease management.

The author welcomes suggestions for making the book more complete and for improvements in the future editions.

N.G. Ravichandra
I am thankful to Dr. Y.G. Shadakshari, Director of Research, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka, India who was kind enough to write the Foreword for this book.

I extend my sincere thanks to Dr. M.S. Nataraju, Hon’ble Vice Chancellor, University of Agricultural Sciences, GKVK, Bangalore for his encouragement.

Special thanks to Dr. R.K. Walia, Project Coordinator, AICRP (Nematodes), Division of Nematology, Indian Agricultural Research Institute, New Delhi, India.

My thanks to Dr. T. Narendrappa, Professor & University Head, Dr. K.T. Rangaswamy, Professor & Head, Prof. B.M.R. Reddy, Dr. Prameela, Dr. N. Nagaraju, Dr. M.K. Prasanna Kumar, Dr. C.P. Manjula and Mr. B.R. Nagendra, Department of Plant pathology, UAS, GKVK, Bengaluru.

I would like to express my deep sense of gratitude to my beloved parents Sri. N. Gurushankar and Smt. Parvathamma, to whom I affectionately dedicate this book.

I wish to record my appreciation and affectionate thanks to my wife, Ms. Deepthi and daughter, Ms. Anusha for their affection, patience, keen interest and follow-up throughout the preparation of the manuscript. Mere words fail to acknowledge their support and cooperation. I am grateful to my in-laws for their encouragement.

I remain ever grateful to my brother-in-law Mr. Sudesh Kumar and sister Ms. Tara for their moral support, affection and special care. I fondly acknowledge their keen interest, and continued encouragement being showered on me.

I take this opportunity to thank M/s. Scientific Publishers, Jodhpur, Rajasthan, India for their help in processing the manuscript and getting the book published.
Plant diseases are a normal part of nature. In order to maintain a sufficient food supply for the growing world’s population, it is necessary for those involved in plant growth and management to find ways to combat plant diseases that are capable of destroying crops on a large scale. Plant disease management has become heavily dependent on chemicals to suppress a wide range of diseases that threaten crops. Chemicals also constitute a critical element in effective Integrated Disease and Pest Management programs. Many of the current chemicals produce excellent results with respect to efficacy, crop quality, food safety and improved cost/profit ratios of agricultural production.

During the past decades ample progress has been achieved in the agrochemical sector. However, the published information on the latest developmental aspects related to agrochemicals, particularly fungicides, bactericides and nematicides, is either meager or incomplete. There is a gap of proper source dissemination between the chemical industry and the academicians / students. Agricultural and Horticultural Universities offer a course on ‘Chemicals used in plant disease management’ in their Degree Programmes. Students are in search of a suitable publication in order to update their knowledge on agrochemicals.

This gap has been successfully filled-in by this new book authored by Dr. N.G. Ravichandra. The book on “Agrochemicals in plant disease management” deals with key aspects of agrochemicals employed in disease management and also covers the syllabus prescribed by the Indian Council of Agricultural Research (ICAR), New Delhi. Besides, a glossary of major terms, bibliography, befitting illustrations and suitable annexures have added value to the book. The organization of the contents, adequate latest information and simplicity in style amply allude to the author’s perspicuity in writing. I compliment and congratulate Dr.N.G.Ravichandra for an admirable attempt to fill the void to facilitate learning and teaching with greater understanding at both the levels, i.e., students and teachers.
CONTENTS

Preface vii
Acknowledgement ix
Foreword x

1. Agrochemicals in Plant Disease Management: Current Scenario 1—23
 1.1 Introduction 1
 1.2 Global market overview, distribution and scenario 3
 1.3 Global trade of crop protection products 4
 1.4 Agrochemical industry in India 5
 1.5 Agrochemicals global market 5
 1.6 Agrochemicals firms 10
 1.7 Agrochemicals research in India 11
 1.7.1 Aspects of agrochemical research (Technical/Formulations/Metabolites) 11
 1.8 Growth drivers, challenges, and upcoming trends 11
 1.9 Challenges faced by the global agrochemical industry 12
 1.10 Challenges faced by the Indian agrochemical industries 15
 1.10.1 Major opportunities 15
 1.10.2 Threats 16
 1.10.3 Facing the challenges 17
 1.11 Classified list of agrochemicals/pesticides 20
 1.11.1 Major fungicide groups 20
 1.11.2 Common bactericides 21
 1.11.3 Nematicides 21
 1.12 The future of agrochemicals in public health programmes 21
References 23

2. History and Development of Agrochemicals 24—130
 2.1 Definition of ‘agrochemical’ 24
 2.2 Major lists of agrochemicals 25
 2.3 Fungicides 27
 2.3.1 History of fungicide development 27
 2.3.2 Agrochemicals in ancient times 29
 2.3.3 Modern agrochemicals 30
 2.3.4 Milestone fungicides 32
 2.3.5 The benefits and risks of fungicides 37
 2.3.6 An overview of fungicide development and usage 38
 2.3.7 Major fungicide groups 41
 2.3.7.1 Benzimidazoles 41
 2.3.7.2 Morpholines 41
 2.3.7.3 Piperazines 42
 2.3.7.4 Imidazoles 43
 2.3.7.5 Pyrimidines 43
 2.3.7.6 Triazoles 44
 2.3.7.7 Anilides 44
 2.3.7.8 Strobilurins 45
 2.3.8 Major fungicides 46
 2.3.8.1 1940–1960 46
 2.3.8.2 1960–1970 49
 2.3.8.3 1970–1980 53
 2.3.8.4 1980–2000 56
 2.3.8.5 2000–present 61
 2.3.9 Sources from natural products 64
 2.3.10 History and development of systemic fungicides 64
 2.3.11 Future trends 68
 2.4 Bactericides (Antibiotics) 69
 2.4.1 History of antibiotics before Fleming’s discovery of penicillin 70
 2.4.2 History of antibiotics after the mid-1940s 70
 2.4.3 Beta-lactam antibiotics 71
 2.4.4 Penicillins 72
 2.4.5 Cefalosporins 76
 2.4.6 Carbapenems 81
 2.4.7 Glycopeptides 83
 2.4.8 Aminoglycosides 84
2.4.9 (Fluoro) Quinolones 86
2.4.10 Nitroimidazoles 88
2.4.11 Chloramphenicol 89
2.4.12 Co-Trimoxazol 90
2.4.13 Some examples of antibiotics derived from fungi 92
2.4.14 Further breakthroughs after penicillin 94
2.4.15 Antibiotic resistance and a glance into the future of antibiotics 95
2.4.16 Modes of action and resistance mechanisms of commonly used antibiotics 96
2.5 Nematicides 98
2.5.1 History and development 99
2.5.2 Major groups of nematicides 103
2.5.2.1 Halogenated hydrocarbons (Fumigants/Volatile compounds) 103
2.5.2.2 Non-fumigant nematicides 105
2.5.2.3 Dithiocarbamates 108
2.5.2.4 Unclassified nematicides 111
2.5.2.5 Compounds with nematicidal activity 112
2.5.2.6 Botanical nematicides 112
2.5.3 Methods of application of systemic nematicides 113
2.5.4 Nematicide ecology 115
2.5.5 Modes of action of nematicides 117
2.5.6 Nematicide movement in soil 120
2.5.8 Compendium of agrochemicals’ common names 120
2.5.9 Fungicides and bactericides–alphabetical listing with trade names 123

References 127

3. Formulations, Application and Phytotoxicity of Agrochemicals

3.1 Formulations 131
3.1.1 General formulation types 132
3.1.2 Formulation selection considerations 133
3.2 The formulation process 134
3.2.1 Liquid formulations 135
3.2.2 Dry/Solid formulations 138
3.2.3 Agrochemical/Fertilizer combinations 142
3.2.4 Fumigants 143
3.2.5 Adjuvants 144
3.2.6 Formulations and label information 153
3.2.7 Glossary 154

3.2.8 Inert ingredient 155
3.3 Application of agrochemicals 156
3.3.1 Sprayers (Hydraulic energy) 157
3.3.2 Sprayers (Gaseous energy) 158
3.3.3 Dusting equipment 158
3.3.4 Granule applicators 159
3.4 Spray nozzles 159
3.4.1 Single-fluid or hydraulic spray nozzles 160
3.4.2 Plain orifice nozzle 160
3.4.3 Shaped orifice nozzle 160
3.4.4 Surface impingement nozzle 160
3.4.5 Spiral spray nozzle 161
3.4.6 Pressure-swirl spray nozzles 161
3.4.7 Solid-cone Single-fluid nozzle 161
3.4.8 Flat fan nozzles 162
3.4.9 The tongue-type nozzle 162
3.4.10 Compound nozzle 162
3.4.11 Two-fluid nozzles 163
3.4.12 Internal-mix two-fluid nozzles 163
3.4.13 External-mix two-fluid nozzles 163
3.4.14 Control of two-fluid nozzles 163
3.4.15 Rotary atomizers 163
3.4.16 Ultrasonic atomizers 164
3.4.17 Electrostatic 164
3.4.18 Hydraulic energy nozzles 164

3.5 Nozzle spray patterns 164
3.5.1 Hollow cone and solid cone nozzles 164
3.5.2 Flat spray nozzles 164
3.5.3 Even spray nozzles 165
3.5.4 Flooding nozzles 165
3.5.5 Multi-pattern spray nozzles 165
3.6 Nozzle performance factors 165

3.7 Spraying techniques 166
3.7.1 High volume spraying 166
3.7.2 Low volume spraying 168
3.7.3 Ultra low volume spraying 168
3.7.4 Electrostatic spraying 169

3.8 Dusters and dust applications 169
3.8.1 Manually operated dusters 170
3.8.2 Power operated dusters 171
3.8.3 Some simple plant protection equipment 171
3.8.4 Spray droplets, sampling and measurement 172
3.8.5 Care and maintenance of plant protection equipment 172
3.8.6 Problems of maintenance and repairs of equipment 173
3.8.7 Timing of spray 175
3.9 Ideal coverage 176
3.10 Spray efficiency and drift 177
3.11 Fungicide toxicology 178
3.12 Environmental fate 181
3.13 Environmental toxicology 182
3.14 Toxicity category and LD50/ LC50 values 184
3.15 Fungicides in order of their adverse effects 185
3.16 Assessment of ecological risks from fungicide use 189
3.17 Antibiotics and human health 192
3.18 Nematicides 194
3.18.1 Application methods 194
3.18.2 Factors affecting effectiveness of fumigants 195
3.19 Degradation of nematicides 197
3.19.1 Effects on non-target organisms 198
3.19.2 Environmental contamination 199
3.20 Movement and toxicity of nematicides in root zone 199
3.20.1 Toxicity and mode of action of nematicides 199
3.20.2 Dosage 201
3.20.3 Effect of tillage 202
3.21 Nematicide distribution 203
3.22 Plant uptake of systemic nematicides 204
3.23 Factors affecting nematicide efficacy 204
3.24 Nematicide ecology 208
3.25 Phytotoxicity 210
3.26 The future of nematicides 212

References 213

4. Classification and Modes of Action of Agrochemicals 217—266
4.1 Fungicides 217
4.2 Making the most of a fungicide application 223
4.3 General modes of action of fungicides 225
4.4 List of major fungicides (Alphabetically arranged) 237
4.5 Bactericides/Antibiotics 239
4.5.1 Sources of antibacterial agents 239
4.5.2 Antibiotic classification 239
4.5.3 Broad classes of antibiotics 241
4.5.4 Plant-derived compounds against bacteria 244
4.5.5 Registered antibiotics and their modes of action 246
4.5.6 The antimicrobial activity of plant extracts 249
4.5.7 General modes of action of bactericides 249
4.6 Nematicides 251
4.6.1 General classification 252
4.6.2 Methods of nematicide application 260
4.6.3 General modes of action of nematicides 261
4.6.4 The future 264

References 265

5. Registration and Regulation of Agrochemicals 267—318
5.1 Introduction 267
5.2 Registration of agrochemicals (excluding botanicals and bacterial chemicals) 268
5.3 United States Environmental Protection Agency (USEPA): Pesticide registration process 272
5.4 Biopesticide registration 275
5.5 Registration requirements and guidance 276
5.6 Types of studies required 277
5.7 Pesticide registration manual 279
5.8 Labelling requirements 280
5.9 Registration committee 280
5.10 Grant of license 282
5.11 List of forms 283
5.12 Guidelines for registration 284
5.13 Use and regulation of insecticides and pesticides 286
5.14 Guidelines on the data requirement for the grant of registration under the Insecticide Act, 1968 288
5.15 Computerized Registration of Pesticides (CROP) using SAP-LAP Framework 291
5.16 Sectors associated with the Insecticides Act, 1968 293
5.17 Fifty years of legislation 297
5.18 Flaws in registration 298
5.18.1 New registration 298
5.18.2 Re-registration 299
5.18.3 Tests and problems associated 299
5.19 Ecological risk assessment 302

References 318
xv

5.20 Human health risk assessment 303
5.21 Models and databases used in pesticide risk assessment 304
5.22 Pesticide labels and labelling 305
5.23 Pesticide label and the material safety data sheet (MSDS) reading 307
5.24 Formats for pesticide labels 307
5.25 Calibration of pesticide equipment 308
5.25.1 Principles of calibration 308
5.25.2 General procedures for calibration 308
5.25.3 Calibration of equipment for typical vector control operations 309
5.26 Pesticide drift 312
5.27 Pesticide residues 313
5.28 Certified organic crops and farms 313
5.29 Fungicide Resistance Action Committee (FRAC) 314
5.30 New FRCC group 317

References 318

6. Safe Handling and use of Agrochemicals 319—329
6.1 Hazard 319
6.2 Categories of toxicity 320
6.3 Safety requirements for chemical industry 320
6.4 Storage standards 323
6.5 Precautions to be taken during chemical manufacturing 324
6.6 Precautions to be taken in chemical laboratory 325
6.7 First-aid treatment 326
6.8 Chemical toxicity 327

References 329

7. Compatibility and Persistence of Agrochemicals 330—381
7.1 Agrochemical mixtures 331
7.2 Types of interactions 331
7.3 Incompatibility 333
7.4 Proper mixing procedures 334
7.5 Types of incompatibility 335
7.6 Tank mixing guidelines 336
7.6.1 General principles for mixing pesticides 337
7.6.2 Specific mixtures to avoid 337
7.6.3 Considerations for tank mixes 338
7.6.4 Benefits, concerns and considerations of tank mixes 338
7.7 General rules on mixing chemicals 340
7.8 Compatibility chart of agrochemicals 342
7.9 Compatibility chart of pesticides, fungicides and biopesticides used in potato IPM 344
7.10 Reasons for incompatibility 345
7.11 Compatibility test 346
7.12 Agrochemical mixtures 347
7.13 Fungicides and insecticides mixture 348
7.14 Persistence of agrochemicals 352
7.15 Fate of agrochemicals in soil 353
7.16 Factors affecting the persistence of agrochemicals 354
7.16.1 Chemical factors 355
7.16.2 Plant factors 357
7.16.3 Soil factors 359
7.16.4 Environmental factors 361
7.17 Properties of agrochemicals 363
7.18 Environmental fate of agrochemicals 367
7.19 Agrochemicals and forest animals 369
7.20 Biodegradation/Bioremediation of agrochemicals in soil 371
7.20.1 Chemical reactions and biodegradation 375
7.21 Enzymatic basis of agrochemicals 375
7.22 Strategies for biodegradation 376
7.23 Rhizoremediation of agrochemicals 377

References 378

8. Pollution and Hazards by Agrochemicals 382—446
8.1 Agrochemicals and their effect 382
8.2 Effect on soil 385
8.2.1 Impact of agrochemicals on soil quality 388
8.2.2 Consequences of soil degradation 389
8.3 Effects on water 390
8.3.1 Agrochemicals can contaminate groundwater 391
8.3.2 Repercussions of water pollution 394
8.3.3 Management practices for protecting water quality 396
8.3.4 Checklist for protecting water from agrochemicals 397
8.3.5 Solutions 397
8.4 Effects on plants 398
8.5 Effect on animals 401
8.5.1 Effect on dogs and cats 402
8.6 Effect on bees 403
8.7 Effect on frogs 407
8.8 Effect on birds 408
8.9 Effect on bats 410
8.10 Effect on wild life 411
8.11 Effect on aquatic life 413
8.12 Effect on amphibians 413
8.13 Effects on human health 415
 8.13.1 Types of toxicity 415
 8.13.2 Symptoms of agrochemical poisoning 416
8.14 Environmental hazards 420
 8.14.1 Perspective and recommendations 421
 8.14.2 Ecological effects of agrochemicals 422
 8.14.3 Agrochemicals and water quality in the developing countries 424
 8.14.4 Categories agrochemicals based on the hazard 425
 8.14.5 Hazard Communication 426
 8.14.6 Misconceptions on environmental pesticide hazards 428
 8.14.7 Minimizing environmental hazards due to persistent agrochemicals 428
 8.14.8 Hazard and risk assessment of substances: The HSAC approach 429
 8.14.9 Pollution, residues and health hazards by agrochemicals 430
8.15 Risk assessment of agrochemicals: Assessment of exposure from all sources 433
8.16 Agrochemicals as hazardous waste 436
8.17 Agrochemicals and soil environment 439
8.18 Agrochemicals and biomagnifications 442
8.19 Misconceptions on environmental agrochemical hazards 442

References 443

9. New Generation Fungicides 447—508
9.1 Major categories 447
9.2 New fungicide categories 450
 9.2.1 Respiration inhibitors 450
 9.2.2 Complex II inhibitors 450
 9.2.3 The oomycetes fungicide family 452
 9.2.4 Cereal fungicides 452
 9.2.5 Triazoles 453
 9.2.6 Strobilurins 453
 9.2.7 Proteomics-based fungicides 457
 9.2.8 Classic chemical antifungal biocides 458
9.3 New protein-based strategies to classical chemical fungicide design 459
9.4 Recently introduced fungicide molecules 461
 9.4.1 The non-antimicrobial disease-resistance inducers 464
 9.4.2 QOI fungicides 465
 9.4.3 QII fungicides 465
 9.4.4 Amidoxime 466
 9.4.5 Propylquinazolin 467
 9.4.6 Benzophenones 467
 9.4.7 Triazole group/Sterol biosynthesis inhibitors (SBI)/Ergosterol Biosynthesis Inhibitors (EBI)/Demethylation inhibiting fungicides (DIM) 468
 9.4.8 Class I DMI-Fungicides 469
 9.4.9 Class II Amines 469
 9.4.10 Class III Hydroxyanilide fungicides 469
 9.4.11 Propiconazole 471
 9.4.12 Inhibitors of squalene epoxidation 471
 9.4.13 Inhibitors of C14-demethylation or DMIAs 472
 9.4.14 Inhibitors of Δ14-reduction and/or Δ8 7-isomerisation 474
 9.4.15 Inhibitors of C4-demethylation 475
 9.4.16 Triforine 477
 9.4.17 Anilinopyrimidines 477
 9.4.18 Phenylpyroles 480
 9.4.19 Hydroxyanilides 482
 9.4.20 Phenoxyquinolines 485
 9.4.21 Benzamides and Valinamides 486
 9.4.22 Imidazolinones 490
 9.4.23 Oxazolidinones 490
 9.4.24 Acetamide compounds 492
 9.4.25 Isothiazolecarboxamides 492
 9.4.26 Pyrazole-carboxamides 493
 9.4.27 Pyridinyl ethyl benzanilides 495
 9.4.28 Benzimidazoles 498
 9.4.29 Succinate Dehydrogenase Inhibitors (SDHIs) 499
 9.4.30 Carboxynilides 503
 9.4.31 Arylamino pyridazines 503
 9.4.32 Triazolinthiones 504
 9.4.33 Pyrimorph 504

References 505
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary</td>
<td>509–521</td>
</tr>
<tr>
<td>Annexure I: Alphabetical List of Some Fungicides and Bactericides by Trade Names</td>
<td>522–525</td>
</tr>
<tr>
<td>Annexure II: Alphabetical List of Some Fungicides, Bactericides and Nematicides by the Active Ingredient/s</td>
<td>526–554</td>
</tr>
<tr>
<td>Annexure III: Reading the Label</td>
<td>555–556</td>
</tr>
<tr>
<td>Annexure IV: Calculation & Preparation of Agrochemical Spray Volume</td>
<td>557</td>
</tr>
</tbody>
</table>